Add new figures in Tikz
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -381,8 +381,7 @@ We thus translated the rotations of the D-branes encoded in the matrices $R_{(t) | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \def\svgwidth{0.5\textwidth} | ||||
|   \import{img}{branchcuts.pdf_tex} | ||||
|   \import{tikz}{branchcuts.pgf} | ||||
|   \caption{% | ||||
|     Branch cut structure of the complex plane with $N_B = 4$. | ||||
|     Cuts are pictured as solid coloured blocks running from one intersection point to another at finite. | ||||
| @@ -599,8 +598,7 @@ We choose $\bart = 1$ in what follows. | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \def\svgwidth{0.35\linewidth} | ||||
|   \import{img}{threebranes_plane.pdf_tex} | ||||
|   \import{tikz}{threebranes_plane.pgf} | ||||
|   \caption{% | ||||
|     Fixing the \SL{2}{\R} invariance for $N_B = 3$ and $\bart = 1$ leads to a cut structure with all the cuts defined on the real axis towards $\omega_{\bart} = \infty$.} | ||||
|   \label{fig:hypergeometric_cuts} | ||||
| @@ -2111,23 +2109,41 @@ Here we compute the parameter $\vec{n}_{1}$ given two Abelian rotation in $\omeg | ||||
| Results are shown in~\Cref{tab:Abelian_composition}. | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \begin{subfigure}[b]{0.45\linewidth} | ||||
|     \centering | ||||
|     \def\svgwidth{0.8\textwidth} | ||||
|     \import{img}{abelian_angles_case1.pdf_tex} | ||||
|     \caption{% | ||||
|       The Abelian limit when the triangle has all acute angles. | ||||
|       This corresponds to the cases  $n_{0} + n_{\infty}< \frac{1}{2}$ and $n_{0}< n_{\infty}$ which are exchanged under the parity $P_2$.} | ||||
|     \label{fig:Abelian_angles_1} | ||||
|     \import{tikz}{abelian_angles_case1_a.pgf} | ||||
|     \caption{Case 1.} | ||||
|   \end{subfigure} | ||||
|   \hfill | ||||
|   \begin{subfigure}[b]{0.45\linewidth} | ||||
|     \centering | ||||
|     \import{tikz}{abelian_angles_case1_b.pgf} | ||||
|     \caption{Case 2.} | ||||
|   \end{subfigure} | ||||
|   \caption{% | ||||
|     The Abelian limit when the triangle has all acute angles. | ||||
|     This corresponds to the cases  $n_{0} + n_{\infty}< \frac{1}{2}$ and $n_{0}< n_{\infty}$ which are exchanged under the parity $P_2$.} | ||||
|   \label{fig:Abelian_angles_1} | ||||
| \end{figure} | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \begin{subfigure}[b]{0.45\linewidth} | ||||
|     \centering | ||||
|     \def\svgwidth{0.8\textwidth} | ||||
|     \import{img}{abelian_angles_case2.pdf_tex} | ||||
|     \caption{% | ||||
|       The Abelian limit when the triangle has one obtuse angle. | ||||
|       This corresponds to the cases $n_{0} + n_{\infty}> \frac{1}{2}$ and $n_{0}> n_{\infty}$ which are exchanged under the parity $P_2$.} | ||||
|     \label{fig:Abelian_angles_2} | ||||
|     \import{tikz}{abelian_angles_case2_a.pgf} | ||||
|     \caption{Case 1.} | ||||
|   \end{subfigure} | ||||
|   \hfill | ||||
|   \begin{subfigure}[b]{0.45\linewidth} | ||||
|     \centering | ||||
|     \import{tikz}{abelian_angles_case2_b.pgf} | ||||
|     \caption{Case 2.} | ||||
|   \end{subfigure} | ||||
|   \caption{% | ||||
|     The Abelian limit when the triangle has one obtuse angle. | ||||
|     This corresponds to the cases $n_{0} + n_{\infty}> \frac{1}{2}$ and $n_{0}> n_{\infty}$ which are exchanged under the parity $P_2$.} | ||||
|   \label{fig:Abelian_angles_2} | ||||
| \end{figure} | ||||
|  | ||||
| Under the parity transformation $P_2$ the previous four cases are grouped | ||||
| @@ -2151,8 +2167,17 @@ when all $m = 0$. | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \def\svgwidth{0.8\textwidth} | ||||
|   \import{img}{usual_abelian_angles.pdf_tex} | ||||
|   \begin{subfigure}[b]{0.45\linewidth} | ||||
|     \centering | ||||
|     \import{tikz}{usual_abelian_angles_a.pgf} | ||||
|     \caption{Case 1.} | ||||
|   \end{subfigure} | ||||
|   \hfill | ||||
|   \begin{subfigure}[b]{0.45\linewidth} | ||||
|     \centering | ||||
|     \import{tikz}{usual_abelian_angles_b.pgf} | ||||
|     \caption{Case 2.} | ||||
|   \end{subfigure} | ||||
|   \caption{% | ||||
|     The geometrical angles used in the usual geometrical approach to the Abelian configuration do not distinguish among the possible branes orientations. | ||||
|     In fact we have $0 \le \alpha < 1$ and $0 < \varepsilon < 1$. | ||||
| @@ -2552,8 +2577,7 @@ Each term of the action can be interpreted again as an area of a triangle where | ||||
|  | ||||
| \begin{figure}[tbp] | ||||
|   \centering | ||||
|   \def\svgwidth{0.35\textwidth} | ||||
|   \import{img/}{brane3d.pdf_tex} | ||||
|   \import{tikz}{brane3d.pgf} | ||||
|   \caption{% | ||||
|     Pictorial $3$-dimensional representation of two D2-branes intersecting in the Euclidean space $\R^3$ along a line (in $\R^4$ the intersection is a point since the co-dimension of each D-brane is 2): since it is no longer constrained on a bi-dimensional plane, the string must be deformed in order to stretch between two consecutive D-branes. | ||||
|     Its action can be larger than the planar area. | ||||
|   | ||||
		Reference in New Issue
	
	Block a user