Add new figures in Tikz
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
@@ -381,8 +381,7 @@ We thus translated the rotations of the D-branes encoded in the matrices $R_{(t)
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\def\svgwidth{0.5\textwidth}
|
||||
\import{img}{branchcuts.pdf_tex}
|
||||
\import{tikz}{branchcuts.pgf}
|
||||
\caption{%
|
||||
Branch cut structure of the complex plane with $N_B = 4$.
|
||||
Cuts are pictured as solid coloured blocks running from one intersection point to another at finite.
|
||||
@@ -599,8 +598,7 @@ We choose $\bart = 1$ in what follows.
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\def\svgwidth{0.35\linewidth}
|
||||
\import{img}{threebranes_plane.pdf_tex}
|
||||
\import{tikz}{threebranes_plane.pgf}
|
||||
\caption{%
|
||||
Fixing the \SL{2}{\R} invariance for $N_B = 3$ and $\bart = 1$ leads to a cut structure with all the cuts defined on the real axis towards $\omega_{\bart} = \infty$.}
|
||||
\label{fig:hypergeometric_cuts}
|
||||
@@ -2111,23 +2109,41 @@ Here we compute the parameter $\vec{n}_{1}$ given two Abelian rotation in $\omeg
|
||||
Results are shown in~\Cref{tab:Abelian_composition}.
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\begin{subfigure}[b]{0.45\linewidth}
|
||||
\centering
|
||||
\def\svgwidth{0.8\textwidth}
|
||||
\import{img}{abelian_angles_case1.pdf_tex}
|
||||
\caption{%
|
||||
The Abelian limit when the triangle has all acute angles.
|
||||
This corresponds to the cases $n_{0} + n_{\infty}< \frac{1}{2}$ and $n_{0}< n_{\infty}$ which are exchanged under the parity $P_2$.}
|
||||
\label{fig:Abelian_angles_1}
|
||||
\import{tikz}{abelian_angles_case1_a.pgf}
|
||||
\caption{Case 1.}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[b]{0.45\linewidth}
|
||||
\centering
|
||||
\import{tikz}{abelian_angles_case1_b.pgf}
|
||||
\caption{Case 2.}
|
||||
\end{subfigure}
|
||||
\caption{%
|
||||
The Abelian limit when the triangle has all acute angles.
|
||||
This corresponds to the cases $n_{0} + n_{\infty}< \frac{1}{2}$ and $n_{0}< n_{\infty}$ which are exchanged under the parity $P_2$.}
|
||||
\label{fig:Abelian_angles_1}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\begin{subfigure}[b]{0.45\linewidth}
|
||||
\centering
|
||||
\def\svgwidth{0.8\textwidth}
|
||||
\import{img}{abelian_angles_case2.pdf_tex}
|
||||
\caption{%
|
||||
The Abelian limit when the triangle has one obtuse angle.
|
||||
This corresponds to the cases $n_{0} + n_{\infty}> \frac{1}{2}$ and $n_{0}> n_{\infty}$ which are exchanged under the parity $P_2$.}
|
||||
\label{fig:Abelian_angles_2}
|
||||
\import{tikz}{abelian_angles_case2_a.pgf}
|
||||
\caption{Case 1.}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[b]{0.45\linewidth}
|
||||
\centering
|
||||
\import{tikz}{abelian_angles_case2_b.pgf}
|
||||
\caption{Case 2.}
|
||||
\end{subfigure}
|
||||
\caption{%
|
||||
The Abelian limit when the triangle has one obtuse angle.
|
||||
This corresponds to the cases $n_{0} + n_{\infty}> \frac{1}{2}$ and $n_{0}> n_{\infty}$ which are exchanged under the parity $P_2$.}
|
||||
\label{fig:Abelian_angles_2}
|
||||
\end{figure}
|
||||
|
||||
Under the parity transformation $P_2$ the previous four cases are grouped
|
||||
@@ -2151,8 +2167,17 @@ when all $m = 0$.
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\def\svgwidth{0.8\textwidth}
|
||||
\import{img}{usual_abelian_angles.pdf_tex}
|
||||
\begin{subfigure}[b]{0.45\linewidth}
|
||||
\centering
|
||||
\import{tikz}{usual_abelian_angles_a.pgf}
|
||||
\caption{Case 1.}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[b]{0.45\linewidth}
|
||||
\centering
|
||||
\import{tikz}{usual_abelian_angles_b.pgf}
|
||||
\caption{Case 2.}
|
||||
\end{subfigure}
|
||||
\caption{%
|
||||
The geometrical angles used in the usual geometrical approach to the Abelian configuration do not distinguish among the possible branes orientations.
|
||||
In fact we have $0 \le \alpha < 1$ and $0 < \varepsilon < 1$.
|
||||
@@ -2552,8 +2577,7 @@ Each term of the action can be interpreted again as an area of a triangle where
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\def\svgwidth{0.35\textwidth}
|
||||
\import{img/}{brane3d.pdf_tex}
|
||||
\import{tikz}{brane3d.pgf}
|
||||
\caption{%
|
||||
Pictorial $3$-dimensional representation of two D2-branes intersecting in the Euclidean space $\R^3$ along a line (in $\R^4$ the intersection is a point since the co-dimension of each D-brane is 2): since it is no longer constrained on a bi-dimensional plane, the string must be deformed in order to stretch between two consecutive D-branes.
|
||||
Its action can be larger than the planar area.
|
||||
|
||||
@@ -95,7 +95,7 @@ Their solutions are the ``holomorphic'' functions $\psi_{+}^i(\xi_+)$ and $\psi_
|
||||
}
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\includegraphics[width=0.4\linewidth]{img/point-like-defects}
|
||||
\import{tikz}{defects.pgf}
|
||||
\caption{Propagation of the string in the presence of the worldsheet defects.}
|
||||
\label{fig:point-like-defects}
|
||||
\end{figure}
|
||||
@@ -838,7 +838,7 @@ Finally we get the anti-commutation relations as
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\includegraphics[width=0.5\linewidth]{img/complex-plane}
|
||||
\import{tikz}{complex_plane_defects.pgf}
|
||||
\caption{%
|
||||
Fields are glued on the $x < 0$ semi-axis with non trivial discontinuities for $x_{(t)} < x < x_{(t-1)}$ for $t = 1,\, 2,\, \dots,\, N$ and where $x_{(t)} = \exp( \htau_{E,\, (t)} )$.
|
||||
}
|
||||
@@ -1636,7 +1636,7 @@ Moreover notice that for $\rL \le -1$ both $b^{(\rE)}_{\rL \le n \le 0}$ and $b^
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\includegraphics[width=0.5\linewidth]{img/in-annihilators.pdf}
|
||||
\import{tikz}{inconsistent_theories.pgf}
|
||||
\caption{As a consistency condition, we have to exclude the values of
|
||||
$\rL$ for which both $b^{(
|
||||
E)}_n$ and $b^{*\, ( \brE )}_{\rL + 1 - n}$ are in-annihilators
|
||||
|
||||
@@ -59,7 +59,7 @@ Thus getting also \hodge{2}{1} from \ml techniques is an important first step to
|
||||
Finally regression is also more useful for extrapolating results: a classification approach assumes that we already know all the possible values of the Hodge numbers and has difficulties to predict labels which do not appear in the training set.
|
||||
This is necessary when we move to a dataset for which not all topological quantities have been computed, for instance CY constructed from the Kreuzer--Skarke list of polytopes~\cite{Kreuzer:2000:CompleteClassificationReflexive}.
|
||||
|
||||
The data analysis and \ml are programmed in Python using open-source packages: \texttt{pandas}~\cite{WesMcKinney:2010:DataStructuresStatistical}, \texttt{matplotlib}~\cite{Hunter:2007:Matplotlib2DGraphics}, \texttt{seaborn}~\cite{Waskom:2020:MwaskomSeabornV0}, \texttt{scikit-learn}~\cite{Pedregosa:2011:ScikitlearnMachineLearning}, \texttt{scikit-optimize}~\cite{Head:2020:ScikitoptimizeScikitoptimize}, \texttt{tensorflow}~\cite{Abadi:2015:TensorFlowLargescaleMachine} (and its high level API \emph{Keras}).
|
||||
The data analysis and \ml are programmed in Python using known open-source packages such as \texttt{pandas}~\cite{WesMcKinney:2010:DataStructuresStatistical}, \texttt{matplotlib}~\cite{Hunter:2007:Matplotlib2DGraphics}, \texttt{seaborn}~\cite{Waskom:2020:MwaskomSeabornV0}, \texttt{scikit-learn}~\cite{Pedregosa:2011:ScikitlearnMachineLearning}, \texttt{scikit-optimize}~\cite{Head:2020:ScikitoptimizeScikitoptimize}, \texttt{tensorflow}~\cite{Abadi:2015:TensorFlowLargescaleMachine} (and its high level API \emph{Keras}).
|
||||
Code is available on \href{https://thesfinox.github.io/ml-cicy/}{Github}.
|
||||
|
||||
|
||||
@@ -192,14 +192,14 @@ Below we show a list of the \cicy properties and of their configuration matrices
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\begin{subfigure}[c]{.45\linewidth}
|
||||
\begin{subfigure}[b]{.45\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth, trim={0 0.45in 6in 0}, clip]{img/label-distribution_orig}
|
||||
\caption{\hodge{1}{1}}
|
||||
\label{fig:data:hist-h11}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[c]{.45\linewidth}
|
||||
\begin{subfigure}[b]{.45\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth, trim={6in 0.45in 0 0}, clip]{img/label-distribution_orig}
|
||||
\caption{\hodge{2}{1}}
|
||||
|
||||
@@ -1020,7 +1020,7 @@ Using the same network we also achieve \SI{97}{\percent} of accuracy in the favo
|
||||
\centering
|
||||
\begin{subfigure}[c]{0.475\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{img/fc}
|
||||
\import{tikz}{fc.pgf}
|
||||
\caption{Architecture of the network.}
|
||||
\label{fig:nn:dense}
|
||||
\end{subfigure}
|
||||
@@ -1099,7 +1099,7 @@ The convolution layers have $180$, $100$, $40$ and $20$ units each.
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\includegraphics[width=0.75\linewidth]{img/ccnn}
|
||||
\import{tikz}{ccnn.pgf}
|
||||
\caption{%
|
||||
Pure convolutional neural network for redicting \hodge{1}{1}.
|
||||
It is made of $4$ modules composed by convolutional layer, ReLU activation, batch normalisation (in this order), followed by a dropout layer, a flatten layer and the output layer (in this order).
|
||||
@@ -1204,7 +1204,7 @@ The callbacks helped to contain the training time (without optimisation) under 5
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\includegraphics[width=0.9\linewidth]{img/icnn}
|
||||
\resizebox{\linewidth}{!}{\import{tikz}{icnn.pgf}}
|
||||
\caption{%
|
||||
In each concatenation module (here shown for the ``old'' dataset) we operate with separate convolution operations over rows and columns, then concatenate the results.
|
||||
The overall architecture is composed of 3 ``inception'' modules made by two separate convolutions, a concatenation layer and a batch normalisation layer (strictly in this order), followed by a dropout layer, a flatten layer and the output layer with ReLU activation (in this order).
|
||||
@@ -1374,7 +1374,7 @@ Another reason is that the different algorithms may perform similarly well in th
|
||||
|
||||
\begin{figure}[tbp]
|
||||
\centering
|
||||
\includegraphics[width=0.65\linewidth]{img/stacking}
|
||||
\resizebox{0.65\linewidth}{!}{\import{tikz}{stacking.pgf}}
|
||||
\caption{Stacking ensemble learning with two level learning.}
|
||||
\label{fig:stack:def}
|
||||
\end{figure}
|
||||
|
||||
Reference in New Issue
Block a user