Correct typo with regex
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -287,14 +287,14 @@ We therefore have | ||||
| \end{equation} | ||||
| Using Fourier transforms it follows that the eigenmodes are | ||||
| \begin{equation} | ||||
|   \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x}) | ||||
|   \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x}) | ||||
|   = | ||||
|   e^{i k_+ v + i l z + i \vec{k} \cdot \vec{x}}\, | ||||
|   \tphi_{k_-kr}(u), | ||||
|   \tphi_{\kmkr}(u), | ||||
| \end{equation} | ||||
| with | ||||
| \begin{equation} | ||||
|   \tphi_{k_-kr}(u) | ||||
|   \tphi_{\kmkr}(u) | ||||
|   = | ||||
|   \frac{1}{\sqrt{\qty( 2 \pi )^D~ \abs{2 \Delta k_+\, u}}} | ||||
|   e^{ | ||||
| @@ -304,7 +304,7 @@ with | ||||
| \end{equation} | ||||
| and | ||||
| \begin{equation} | ||||
|   \phi^*_{k_-kr}\qty(u,\, v,\, z,\, \vec{x}) | ||||
|   \phi^*_{\kmkr}\qty(u,\, v,\, z,\, \vec{x}) | ||||
|   = | ||||
|   \phi_{\mkmkr}\qty(u,\, v,\, z,\, \vec{x}). | ||||
| \end{equation} | ||||
| @@ -312,7 +312,7 @@ We chose the numeric factor in order to get a canonical normalisation: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     & | ||||
|     \qty( \phi_{k_-krN{1}},\,  \phi_{k_-krN{2}} ) | ||||
|     \qty( \phi_{\kmkrN{1}},\,  \phi_{\kmkrN{2}} ) | ||||
|     \\ | ||||
|     = & | ||||
|     \int\limits_{\R^{D-3}} \dd[D-3]{\vec{x}}\, | ||||
| @@ -320,7 +320,7 @@ We chose the numeric factor in order to get a canonical normalisation: | ||||
|     \infinfint{v}\, | ||||
|     \finiteint{z}{0}{2\pi} | ||||
|     \abs{\Delta u}\, | ||||
|     \phi_{k_-krN{1}}\, \phi_{k_-krN{2}} | ||||
|     \phi_{\kmkrN{1}}\, \phi_{\kmkrN{2}} | ||||
|     \\ | ||||
|     = & | ||||
|     \delta^{D-3}( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)})\, | ||||
| @@ -337,8 +337,8 @@ We can then perform the off-shell expansion | ||||
|   \infinfint{k_+} | ||||
|   \infinfint{r} | ||||
|   \infinfsum{l} | ||||
|   \cA_{k_-kr}\, | ||||
|   \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x}), | ||||
|   \cA_{\kmkr}\, | ||||
|   \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x}), | ||||
| \end{equation} | ||||
| such that the scalar kinetic term becomes  | ||||
| \begin{equation} | ||||
| @@ -349,8 +349,8 @@ such that the scalar kinetic term becomes | ||||
|   \infinfint{r} | ||||
|   \infinfsum{l} | ||||
|   \qty(r - M^2)\, | ||||
|   \cA_{k_-kr}\, | ||||
|   \cA_{k_-kr}^*. | ||||
|   \cA_{\kmkr}\, | ||||
|   \cA_{\kmkr}^*. | ||||
| \end{equation} | ||||
|  | ||||
|  | ||||
| @@ -461,7 +461,7 @@ We proceed hierarchically: first we solve for $a_v$ and $a_i$ whose equations ar | ||||
| We get the solutions: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \norm{\tildea_{k_-kr\, \alpha}(u)} | ||||
|     \norm{\tildea_{\kmkr\, \alpha}(u)} | ||||
|     \,= | ||||
|     \mqty(% | ||||
|       \tildea_u | ||||
| @@ -479,7 +479,7 @@ We get the solutions: | ||||
|       \qty{ \underu, \underv, \underz,\underi } | ||||
|     } | ||||
|     \pol{\alpha} | ||||
|     \norm{\tildea^{\underline{\alpha}}_{k_-kr\, \alpha}(u)} | ||||
|     \norm{\tildea^{\underline{\alpha}}_{\kmkr\, \alpha}(u)} | ||||
|     \\ | ||||
|     & = | ||||
|     \pol{u} | ||||
| @@ -492,7 +492,7 @@ We get the solutions: | ||||
|       \\ | ||||
|       0 | ||||
|     )\, | ||||
|     \tphi_{k_-kr}(u) | ||||
|     \tphi_{\kmkr}(u) | ||||
|     \\ | ||||
|     & + | ||||
|     \pol{v} | ||||
| @@ -507,7 +507,7 @@ We get the solutions: | ||||
|       \\ | ||||
|       0 | ||||
|     )\, | ||||
|     \tphi_{k_-kr}(u) | ||||
|     \tphi_{\kmkr}(u) | ||||
|     \\ | ||||
|     & + | ||||
|     \pol{z} | ||||
| @@ -520,7 +520,7 @@ We get the solutions: | ||||
|       \\ | ||||
|       0 | ||||
|     )\, | ||||
|     \tphi_{k_-kr}(u) | ||||
|     \tphi_{\kmkr}(u) | ||||
|     \\ | ||||
|     & + | ||||
|     \pol{j} | ||||
| @@ -533,7 +533,7 @@ We get the solutions: | ||||
|       \\ | ||||
|       \delta_{\underline{ij}} | ||||
|     )\, | ||||
|     \tphi_{k_-kr}(u), | ||||
|     \tphi_{\kmkr}(u), | ||||
|     \label{eq:Orbifold_spin1_pol} | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| @@ -549,13 +549,13 @@ then we can expand the off-shell fields as | ||||
|   } | ||||
|   \infinfsum{l} | ||||
|   \pol{\alpha}\, | ||||
|   {a}^{\underline{\alpha}}_{k_-kr\, \alpha}\qty(u,\, v,\, z,\, \vec{x} ), | ||||
|   {a}^{\underline{\alpha}}_{\kmkr\, \alpha}\qty(u,\, v,\, z,\, \vec{x} ), | ||||
| \end{equation} | ||||
| where | ||||
| \begin{equation} | ||||
|   a^{\underline{\alpha}}_{k_-kr\, \alpha}\qty(u,\, v,\, z,\, \vec{x}) | ||||
|   a^{\underline{\alpha}}_{\kmkr\, \alpha}\qty(u,\, v,\, z,\, \vec{x}) | ||||
|   = | ||||
|   \tildea^{\underline{\alpha}}_{k_-kr\, \alpha}(u)\, | ||||
|   \tildea^{\underline{\alpha}}_{\kmkr\, \alpha}(u)\, | ||||
|   e^{i\, \qty( k_+ v + l z + \vec{k} \cdot \vec{x})} | ||||
| \end{equation} | ||||
| and $\int \ccD k = \int\limits_{\R^{D-3}} \dd[D-3]{\vec{k}} \infinfint{k_+} \infinfint{r}$. | ||||
| @@ -573,7 +573,7 @@ We can also compute the normalisation as | ||||
|     \\ | ||||
|     & \times | ||||
|     g^{\alpha\beta}\, | ||||
|     a_{k_-krN{1}\, \alpha}\,  a_{k_-krN{2}\, \beta} | ||||
|     a_{\kmkrN{1}\, \alpha}\,  a_{\kmkrN{2}\, \beta} | ||||
|     \\ | ||||
|     & = | ||||
|     \genpolN{1} \circ \genpolN{2} | ||||
| @@ -624,9 +624,9 @@ The photon kinetic term becomes | ||||
|   \infinfint{r} | ||||
|   \infinfsum{l}\, | ||||
|   \frac{r}{2}\, | ||||
|   \cE_{k_-kr}\, | ||||
|   \cE_{\kmkr}\, | ||||
|   \circ | ||||
|   \cE_{k_-kr}^*. | ||||
|   \cE_{\kmkr}^*. | ||||
| \end{equation} | ||||
|  | ||||
|  | ||||
| @@ -654,7 +654,7 @@ Its computation involves integrals such as | ||||
|   \int \dd{u}\, | ||||
|   \abs{\Delta u}\, | ||||
|   \qty(\frac{l}{u})^2 | ||||
|   \finiteprod{i}{1}{3} \tphi_{k_-krN{i}} | ||||
|   \finiteprod{i}{1}{3} \tphi_{\kmkrN{i}} | ||||
|   \sim | ||||
|   \int\limits_{u \sim 0} \dd{u}\,  | ||||
|   \qty(\frac{l^2}{\abs{u}^{\frac{5}{2}}}) | ||||
| @@ -668,7 +668,7 @@ and | ||||
|   \int \dd{u}\, | ||||
|   \abs{\Delta u}\, | ||||
|   \qty(\frac{1}{u}) | ||||
|   \finiteprod{i}{1}{3} \tphi_{k_-krN{i}} | ||||
|   \finiteprod{i}{1}{3} \tphi_{\kmkrN{i}} | ||||
|   \sim | ||||
|   \int\limits_{u \sim 0} \dd{u}\,  | ||||
|   \qty(\frac{1}{u\, \abs{u}^{\frac{1}{2}}}) | ||||
| @@ -720,7 +720,7 @@ and we get:\footnotemark{} | ||||
|     \delta_{\finitesum{i}{1}{3} l_{\qty(i)},\, 0}\, | ||||
|     \\ | ||||
|     & \times | ||||
|     \qty(\cA_{\mkmkrN{2}})^*\, \cA_{k_-krN{3}} | ||||
|     \qty(\cA_{\mkmkrN{2}})^*\, \cA_{\kmkrN{3}} | ||||
|     \\ | ||||
|     & \times | ||||
|     \Biggl\lbrace | ||||
| @@ -782,19 +782,19 @@ In the previous expressions we also defined for future use: | ||||
|   \infinfint{u}\, | ||||
|   \abs{\Delta u}\, u^{\nu}\, | ||||
|   \finiteprod{i}{1}{N} | ||||
|   \tphi_{k_-krN{i}} | ||||
|   \tphi_{\kmkrN{i}} | ||||
|   \\ | ||||
|   \cJ_{\qty{N}}^{\qty[\nu]} | ||||
|   & = & | ||||
|   \infinfint{u}\, | ||||
|   \abs{\Delta}\, \abs{u}^{1 + \nu} | ||||
|   \finiteprod{i}{1}{N} \tphi_{k_-krN{i}}. | ||||
|   \finiteprod{i}{1}{N} \tphi_{\kmkrN{i}}. | ||||
| \end{eqnarray} | ||||
| For the sake of brevity from now on we use | ||||
| \begin{eqnarray} | ||||
|   \tphi_{\qty(i)} & = & \tphi_{k_-krN{i}}, | ||||
|   \tphi_{\qty(i)} & = & \tphi_{\kmkrN{i}}, | ||||
|   \\ | ||||
|   \tphi_{\qty(i)} & = & \tphi_{k_-krN{i}} | ||||
|   \tphi_{\qty(i)} & = & \tphi_{\kmkrN{i}} | ||||
| \end{eqnarray} | ||||
| when not causing confusion. | ||||
|  | ||||
| @@ -835,7 +835,7 @@ which can be expressed using the modes as: | ||||
|     & \times | ||||
|     \Biggl\lbrace | ||||
|       e^2\, | ||||
|       \qty(\cA_{\mkmkrN{3}})^* \cA_{k_-krN{4}} | ||||
|       \qty(\cA_{\mkmkrN{3}})^* \cA_{\kmkrN{4}} | ||||
|       \\ | ||||
|       & \times | ||||
|       \Biggl[ | ||||
| @@ -879,8 +879,8 @@ where | ||||
|     \qty(\cA_{\mkmkrN{2}})^*\, | ||||
|     \\ | ||||
|     & \times | ||||
|     \cA_{k_-krN{3}}\, | ||||
|     \cA_{k_-krN{4}}. | ||||
|     \cA_{\kmkrN{3}}\, | ||||
|     \cA_{\kmkrN{4}}. | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| When setting $l_{\qty(*)} = 0$ all the surviving terms are divergent. | ||||
| @@ -896,12 +896,12 @@ From the discussion in the previous section the origin of the divergences is the | ||||
| When $l = 0$ the highest order singularity of the Fourier transformed d'Alembertian equation vanishes. | ||||
| Explicitly we have: | ||||
| \begin{equation} | ||||
|   A\, \ipd{u} \tphi_{k_-kr} | ||||
|   A\, \ipd{u} \tphi_{\kmkr} | ||||
|   + | ||||
|   B(u)\, \tphi_{k_-kr} | ||||
|   B(u)\, \tphi_{\kmkr} | ||||
|   = | ||||
|   A\, e^{-\int^u \frac{B(u)}{A} du}\,  | ||||
|   \ipd{u} \qty[ e^{+\int^u \frac{B(u)}{A} du} \tphi_{k_-kr} ] | ||||
|   \ipd{u} \qty[ e^{+\int^u \frac{B(u)}{A} du} \tphi_{\kmkr} ] | ||||
|   = | ||||
|   0, | ||||
| \end{equation} | ||||
| @@ -1269,7 +1269,7 @@ to finally get:\footnotemark{} | ||||
|     & = | ||||
|     \cN\, | ||||
|     \infinfsum{l} | ||||
|     \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})     | ||||
|     \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})     | ||||
|     e^{i\, l\, \frac{k_2}{\Delta k_+}}, | ||||
|   \end{split} | ||||
| \label{eq:Psi_phi} | ||||
| @@ -1284,7 +1284,7 @@ when $k_+ \neq 0$ and where | ||||
| The fact that $\Psi$ depends only on the equivalence class $\qty[k_+\, k_-\, k_2\, k]$ allows us to restrict $0 \le \frac{k_2}{\Delta\, \abs{k_+}} < 2 \pi$ so that we can invert the previous expression and get: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})     | ||||
|     \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})     | ||||
|     & = | ||||
|     \frac{1}{\cN}\, | ||||
|     \frac{1}{2 \pi \Delta \abs{k_+}} | ||||
| @@ -1336,7 +1336,7 @@ The explicit expression for the eigenfunction with constant $\epsilon_+$, $\epsi | ||||
|     } | ||||
|     \\ | ||||
|     & = | ||||
|     \cN | ||||
|     \cN\, | ||||
|     \psi^{[1]}_{k_+\, k_-\, k_2;\, \epsilon_+\, \epsilon_-\, \epsilon_2}\qty(u,\, v,\, z), | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| @@ -1370,7 +1370,7 @@ Building the corresponding function on the orbifold amounts to summing the image | ||||
|     \psi_{k}\qty( \cK^n x) | ||||
|     = | ||||
|     \infinfsum{n} | ||||
|     \cK^{-n} | ||||
|     \cK^{-n}\, | ||||
|     \vec{\epsilon} \cdot \dd{x}~ | ||||
|     \psi_{\cK^{-n} k}\qty(x). | ||||
|   \end{split} | ||||
| @@ -1508,7 +1508,7 @@ Then it follows that | ||||
|   \label{eq:a_uvz_from_covering} | ||||
| \end{equation} | ||||
| Many coefficients of $\Psi$ or its derivatives contain $k_2$.  | ||||
| They cannot be expressed using the quantum numbers $k_-kr$ of the orbifold but are invariant on it. | ||||
| They cannot be expressed using the quantum numbers $\kmkr$ of the orbifold but are invariant on it. | ||||
| They are new orbifold quantities we interpret as orbifold polarisations. | ||||
| Using~\eqref{eq:Psi_phi} we can finally write | ||||
| \begin{equation} | ||||
| @@ -1516,7 +1516,7 @@ Using~\eqref{eq:Psi_phi} we can finally write | ||||
|     \Psi^{[1]}_{[k,\, \epsilon]}\qty(\qty[x]) | ||||
|     & = | ||||
|     \infinfsum{l} | ||||
|     \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})     | ||||
|     \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})     | ||||
|     e^{i\, l \frac{k_2}{\Delta k_+}} | ||||
|     \\ | ||||
|     & \times | ||||
| @@ -1931,7 +1931,7 @@ The final expression for the orbifold symmetric tensor is | ||||
|     \Psi^{[2]}_{\qty[\vec{k},\, S]}\qty(\qty[x]) | ||||
|     & = | ||||
|     \infinfsum{l} | ||||
|     \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})     | ||||
|     \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})     | ||||
|     e^{i\, l \frac{k_2}{\Delta k_+}} | ||||
|     \\ | ||||
|     & \times | ||||
| @@ -2870,26 +2870,29 @@ We therefore need solve: | ||||
| \end{equation} | ||||
| To this purpose, we introduce a Fourier transformation over $v,\, w,\, z,\, \vec{x}$: | ||||
| \begin{equation} | ||||
|   \phi_r\qty( u,\, v,\, w,\, z,\, \vec{x}) | ||||
|   = | ||||
|   \infinfsum{l}\, | ||||
|   \int\limits_{\R^{D-4}} \dd[D-4]{\vec{k}} | ||||
|   \infinfint{k_+} | ||||
|   \infinfint{p}\, | ||||
|   e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )} | ||||
|   \tphi_{k_-krgen}(u), | ||||
|   \begin{split} | ||||
|     & \phi_r\qty( u,\, v,\, w,\, z,\, \vec{x}) | ||||
|     \\ | ||||
|     & = | ||||
|     \infinfsum{l}\, | ||||
|     \int\limits_{\R^{D-4}} \dd[D-4]{\vec{k}} | ||||
|     \infinfint{k_+} | ||||
|     \infinfint{p}\, | ||||
|     e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )} | ||||
|     \tphi_{\kmkrgen}(u), | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| where we defined $k_+,\, p,\, l,\, \vec{k}$ as associated momenta to $v,\, w,\, z,\, \vec{x}$ respectively. | ||||
| We find: | ||||
| \begin{equation} | ||||
|   \phi_{k_-krgen}\qty( u,\, v,\, w,\, z,\, \vec{x} ) | ||||
|   \phi_{\kmkrgen}\qty( u,\, v,\, w,\, z,\, \vec{x} ) | ||||
|   = | ||||
|   e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )} | ||||
|   \tphi_{k_-krgen}( u ). | ||||
|   \tphi_{\kmkrgen}( u ). | ||||
| \end{equation} | ||||
| where | ||||
| \begin{equation} | ||||
|   \tphi_{k_-krgen}( u ) | ||||
|   \tphi_{\kmkrgen}( u ) | ||||
|   = | ||||
|   \frac{1}{2 \sqrt{\qty(2 \pi)^D \abs{\Delta_2 \Delta_3 k_+}}}\, | ||||
|   \frac{1}{\abs{u}} | ||||
| @@ -2906,7 +2909,7 @@ where | ||||
| These solutions present the right normalisation, as we can verify through the product: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     & \left( \phi_{k_-krgenN{1}},\, \phi_{k_-krgenN{2}} \right) | ||||
|     & \left( \phi_{\kmkrgenN{1}},\, \phi_{\kmkrgenN{2}} \right) | ||||
|     \\ | ||||
|     & = | ||||
|     \int\limits_{\R^{D-4}} \dd[D-4]{\vec{x}} | ||||
| @@ -2917,8 +2920,8 @@ These solutions present the right normalisation, as we can verify through the pr | ||||
|     2 \abs{\Delta_2 \Delta_3} u^2 | ||||
|     \\ | ||||
|     & \times | ||||
|     \phi_{k_-krgenN{1}}~ | ||||
|     \phi_{k_-krgenN{2}} | ||||
|     \phi_{\kmkrgenN{1}}~ | ||||
|     \phi_{\kmkrgenN{2}} | ||||
|     \\ | ||||
|     & = | ||||
|     \delta^{D - 4}\qty( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)} )\, | ||||
| @@ -2942,7 +2945,7 @@ Then we have the off-shell expansion: | ||||
|     \infinfint{r} | ||||
|     \\ | ||||
|     & \times | ||||
|     \frac{\cA_{k_-krgen}}{\abs{u}} | ||||
|     \frac{\cA_{\kmkrgen}}{\abs{u}} | ||||
|     e^{% | ||||
|       i\, \qty(% | ||||
|         k_+ v + p w + l z + \vec{k} \cdot \vec{x} | ||||
| @@ -3115,15 +3118,15 @@ These equations can be solved using standard techniques through a Fourier transf | ||||
|     \\ | ||||
|     & \times | ||||
|     e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )} | ||||
|     \tildea_{k_-krgen\, \alpha}(u). | ||||
|     \tildea_{\kmkrgen\, \alpha}(u). | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| We first solve the equations for $\tildea_{k_-krgen\, v}$ and $\tildea_{k_-krgen\, i}$ since they are identical to the scalar equation~\eqref{eq:scalar_eom}. | ||||
| We then insert their solutions as sources for the equations for $\tildea_{k_-krgen\, u}$, $\tildea_{k_-krgen\, w}$ and $\tildea_{k_-krgen\, z}$. | ||||
| We first solve the equations for $\tildea_{\kmkrgen\, v}$ and $\tildea_{\kmkrgen\, i}$ since they are identical to the scalar equation~\eqref{eq:scalar_eom}. | ||||
| We then insert their solutions as sources for the equations for $\tildea_{\kmkrgen\, u}$, $\tildea_{\kmkrgen\, w}$ and $\tildea_{\kmkrgen\, z}$. | ||||
| The solutions can be written as the expansion: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \norm{\tildea_{k_-krgen\, \alpha}(u)} | ||||
|     \norm{\tildea_{\kmkrgen\, \alpha}(u)} | ||||
|     & = | ||||
|     \mqty(% | ||||
|       \tildea_u | ||||
| @@ -3139,16 +3142,16 @@ The solutions can be written as the expansion: | ||||
|     \\ | ||||
|     & = | ||||
|     \sum\limits_{\ualpha \in \qty{\underu, \underv, \underw, \underz, \underi}} | ||||
|     \cE_{k_-krgen\, \ualpha}\, | ||||
|     \norm{\tildea^{\ualpha}_{k_-krgen\, \alpha}(u)} | ||||
|     \cE_{\kmkrgen\, \ualpha}\, | ||||
|     \norm{\tildea^{\ualpha}_{\kmkrgen\, \alpha}(u)} | ||||
|     \\ | ||||
|     & = | ||||
|     \cE_{k_-krgen\, \underu}\, | ||||
|     \cE_{\kmkrgen\, \underu}\, | ||||
|     \mqty( 1 \\ 0 \\ 0 \\ 0 \\ 0 )\, | ||||
|     \tphi_{k_-krgen} | ||||
|     \tphi_{\kmkrgen} | ||||
|     \\ | ||||
|     & + | ||||
|     \cE_{k_-krgen\, \underv}\, | ||||
|     \cE_{\kmkrgen\, \underv}\, | ||||
|     \mqty(% | ||||
|       \frac{i}{2 k_+ u} | ||||
|       + | ||||
| @@ -3163,10 +3166,10 @@ The solutions can be written as the expansion: | ||||
|       \\ | ||||
|       0 | ||||
|     )\, | ||||
|     \tphi_{k_-krgen} | ||||
|     \tphi_{\kmkrgen} | ||||
|     \\ | ||||
|     & + | ||||
|     \cE_{k_-krgen\, \underw}\, | ||||
|     \cE_{\kmkrgen\, \underw}\, | ||||
|     \mqty( | ||||
|       \frac{1}{4 k_+ \abs{u}} | ||||
|       \qty( \frac{l + p}{\Delta_2^2} - \frac{l - p}{\Delta_3^2} ) | ||||
| @@ -3179,10 +3182,10 @@ The solutions can be written as the expansion: | ||||
|       \\ | ||||
|       0 | ||||
|     )\, | ||||
|     \tphi_{k_-krgen} | ||||
|     \tphi_{\kmkrgen} | ||||
|     \\ | ||||
|     & + | ||||
|     \cE_{k_-krgen\, \underz}\, | ||||
|     \cE_{\kmkrgen\, \underz}\, | ||||
|     \mqty( | ||||
|       \frac{1}{4 k_+ \abs{u}} | ||||
|       \qty( \frac{l + p}{\Delta_2^2} + \frac{l - p}{\Delta_3^2} ) | ||||
| @@ -3195,20 +3198,20 @@ The solutions can be written as the expansion: | ||||
|       \\ | ||||
|       0 | ||||
|     )\, | ||||
|     \tphi_{k_-krgen} | ||||
|     \tphi_{\kmkrgen} | ||||
|     \\ | ||||
|     & + | ||||
|     \cE_{k_-krgen\, \underj}\, | ||||
|     \cE_{\kmkrgen\, \underj}\, | ||||
|     \mqty( 0 \\ 0 \\ 0 \\ 0 \\ \delta_{\underline{i j}} )\, | ||||
|     \tphi_{k_-krgen} | ||||
|     \tphi_{\kmkrgen} | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| Consider the Fourier transformed functions: | ||||
| \begin{equation} | ||||
|   a^{\ualpha}_{k_-krgen\, \alpha}\qty( u,\, v,\, w,\, z,\, \vec{x} ) | ||||
|   a^{\ualpha}_{\kmkrgen\, \alpha}\qty( u,\, v,\, w,\, z,\, \vec{x} ) | ||||
|   = | ||||
|   e^{i\, \qty(k_+ v + p w + l z + \vec{k} \cdot \vec{x})} | ||||
|   \tildea^{\ualpha}_{k_-krgen\, \alpha}( u ), | ||||
|   \tildea^{\ualpha}_{\kmkrgen\, \alpha}( u ), | ||||
| \end{equation} | ||||
| then we can expand the off shell fields as | ||||
| \begin{equation} | ||||
| @@ -3223,8 +3226,8 @@ then we can expand the off shell fields as | ||||
|     \\ | ||||
|     & \times | ||||
|     \sum_{\ualpha \in \qty{\underu, \underv, \underw, \underz, \underi}} | ||||
|     \cE_{k_-krgen\, \alpha}\, | ||||
|     a^{\ualpha}_{k_-krgen\, \alpha}(x). | ||||
|     \cE_{\kmkrgen\, \alpha}\, | ||||
|     a^{\ualpha}_{\kmkrgen\, \alpha}(x). | ||||
|   \end{split} | ||||
| \end{equation} | ||||
|  | ||||
| @@ -3241,7 +3244,7 @@ We can compute the normalisation as: | ||||
|     2 \abs{\Delta_2 \Delta_3} u^2 | ||||
|     \\ | ||||
|     & \times | ||||
|     \qty(g^{\alpha\beta}\, a_{k_-krgenN{1}\, \alpha}\, a_{k_-krgenN{2}\, \beta}) | ||||
|     \qty(g^{\alpha\beta}\, a_{\kmkrgenN{1}\, \alpha}\, a_{\kmkrgenN{2}\, \beta}) | ||||
|     \\ | ||||
|     & = | ||||
|     \delta^{D-4}\qty( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)} )\, | ||||
| @@ -3251,7 +3254,7 @@ We can compute the normalisation as: | ||||
|     \delta\qty( r_1 - r_2 ) | ||||
|     \\ | ||||
|     & \times | ||||
|     \cE_{k_-krgenN{1}} \circ \cE_{k_-krgenN{2}}, | ||||
|     \cE_{\kmkrgenN{1}} \circ \cE_{\kmkrgenN{2}}, | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| where | ||||
| @@ -3285,16 +3288,16 @@ where | ||||
| is independent of the coordinates. | ||||
| The Lorenz gauge now reads: | ||||
| \begin{equation} | ||||
|   \eta^{i\underj}\, k_i \, \cE_{{k_-krgen} \underj} | ||||
|   \eta^{i\underj}\, k_i \, \cE_{{\kmkrgen} \underj} | ||||
|   - | ||||
|   k_+ | ||||
|   \cE_{k_-krgen\, \underu} | ||||
|   \cE_{\kmkrgen\, \underu} | ||||
|   - | ||||
|   \frac{\vec{k}^2 + r}{2 k_+} | ||||
|   \cE_{k_-krgen\, \underv} | ||||
|   \cE_{\kmkrgen\, \underv} | ||||
|   = 0. | ||||
| \end{equation} | ||||
| As in the previous case, the constraint equation does not pose any condition on the transverse polarisations $\cE_{k_-krgen\, \underw}$ and $\cE_{k_-krgen\, \underz}$. | ||||
| As in the previous case, the constraint equation does not pose any condition on the transverse polarisations $\cE_{\kmkrgen\, \underw}$ and $\cE_{\kmkrgen\, \underz}$. | ||||
|  | ||||
|  | ||||
| \subsubsection{Cubic Interaction} | ||||
| @@ -3331,16 +3334,16 @@ In the case of the \gnbo we find: | ||||
|     & \times | ||||
|     e~ | ||||
|     \cA^*_{\mkmkrgenN{2}} | ||||
|     \cA_{k_-krgenN{3}} | ||||
|     \cA_{\kmkrgenN{3}} | ||||
|     \\ | ||||
|     & \times | ||||
|     \Biggl\lbrace | ||||
|       \cE_{k_-krgenN{1}\, \underu}~ | ||||
|       \cE_{\kmkrgenN{1}\, \underu}~ | ||||
|       k_{\qty(2)\, +}~ | ||||
|       \cI_{\qty{3}}^{\qty[0]} | ||||
|       \\ | ||||
|       & + | ||||
|       \cE_{k_-krgenN{1}\, \underv}~ | ||||
|       \cE_{\kmkrgenN{1}\, \underv}~ | ||||
|       \Biggl[ | ||||
|         \qty( \frac{\vec{k}_{\qty(2)}^2 + r_{(2)}}{2 k_{\qty(2)\, +}} )\, | ||||
|         \cI_{\qty{3}}^{\qty[0]} | ||||
| @@ -3370,7 +3373,7 @@ In the case of the \gnbo we find: | ||||
|       \Biggr] | ||||
|       \\ | ||||
|       & + | ||||
|       \qty( \cE_{k_-krgenN{1}\, \underw} - \cE_{k_-krgenN{1}\, \underz} ) | ||||
|       \qty( \cE_{\kmkrgenN{1}\, \underw} - \cE_{\kmkrgenN{1}\, \underz} ) | ||||
|       \\ | ||||
|       & \times | ||||
|       \Biggl[ | ||||
| @@ -3402,18 +3405,18 @@ where we defined: | ||||
|     \cI_{\qty{N}}^{\qty[\nu]} | ||||
|     & = | ||||
|     \infinfint{u} | ||||
|     2\, \abs{\Delta_2 \Delta_3} u^2\, u^{\nu}\, \finiteprod{i}{1}{N} \tphi_{k_-krgenN{i}}, | ||||
|     2\, \abs{\Delta_2 \Delta_3} u^2\, u^{\nu}\, \finiteprod{i}{1}{N} \tphi_{\kmkrgenN{i}}, | ||||
|     \\ | ||||
|     \cJ_{\qty{N}}^{\qty[\nu]} | ||||
|     & = | ||||
|     \infinfint{u} | ||||
|     2\, \abs{\Delta_2 \Delta_3} u^2\, \abs{u}^{\nu}\, \finiteprod{i}{1}{N} \tphi_{k_-krgenN{i}}. | ||||
|     2\, \abs{\Delta_2 \Delta_3} u^2\, \abs{u}^{\nu}\, \finiteprod{i}{1}{N} \tphi_{\kmkrgenN{i}}. | ||||
|   \end{split} | ||||
| \end{equation} | ||||
|  | ||||
|  | ||||
| While in the \nbo case we need to regularise the integrals at least taking their principal part when all $l_{(*)} = 0$ in~\eqref{eq:nbo_div_integral}, the \gnbo does not need any specific manipulation. | ||||
| In fact the form of $\tphi_{k_-krgenN{i}}$ in~\eqref{eq:GNBO_reg_wave_functions} prevents the formation of isolated zeros in the phase factor proportional to $u^{-1}$: the presence of the continuous momentum $p$, contrary to the \nbo where all momenta are discrete, gives the integrals a distributional interpretation, similar to a derivative of a Dirac $\delta$ function. | ||||
| In fact the form of $\tphi_{\kmkrgenN{i}}$ in~\eqref{eq:GNBO_reg_wave_functions} prevents the formation of isolated zeros in the phase factor proportional to $u^{-1}$: the presence of the continuous momentum $p$, contrary to the \nbo where all momenta are discrete, gives the integrals a distributional interpretation, similar to a derivative of a Dirac $\delta$ function. | ||||
|  | ||||
|  | ||||
| \subsubsection{Quartic Interactions} | ||||
| @@ -3454,16 +3457,16 @@ As for the \nbo, we consider the quartic interaction for the scalar \qed action: | ||||
|     \Biggl\lbrace | ||||
|       e^2 | ||||
|       \cA^*_{\mkmkrgenN{3}} | ||||
|       \cA_{k_-krgenN{4}} | ||||
|       \cA_{\kmkrgenN{4}} | ||||
|       \\ | ||||
|       & \times | ||||
|       \Biggl[ | ||||
|         \cE_{k_-krgenN{1}} \circ \cE_{k_-krgenN{2}}\, | ||||
|         \cE_{\kmkrgenN{1}} \circ \cE_{\kmkrgenN{2}}\, | ||||
|         \cI_{\qty{4}}^{\qty[0]} | ||||
|         \\ | ||||
|         & - i | ||||
|         \cE_{k_-krgenN{1}\, \underv}\, | ||||
|         \cE_{k_-krgenN{2}\, \underv} | ||||
|         \cE_{\kmkrgenN{1}\, \underv}\, | ||||
|         \cE_{\kmkrgenN{2}\, \underv} | ||||
|         \\ | ||||
|         & \times | ||||
|         \Biggl( | ||||
| @@ -3497,8 +3500,8 @@ As for the \nbo, we consider the quartic interaction for the scalar \qed action: | ||||
|       \cA^*_{\mkmkrgenN{2}} | ||||
|       \\ | ||||
|       & \times | ||||
|       \cA_{k_-krgenN{3}} | ||||
|       \cA_{k_-krgenN{4}} | ||||
|       \cA_{\kmkrgenN{3}} | ||||
|       \cA_{\kmkrgenN{4}} | ||||
|       \cI_{\qty{4}}^{\qty[0]} | ||||
|     \Biggr\rbrace, | ||||
|   \end{split} | ||||
| @@ -3514,16 +3517,16 @@ where we defined: | ||||
|     \\ | ||||
|     \tilde{\cE}_{\pm\,\left( a, b \right)} | ||||
|     & = | ||||
|     \cE_{k_-krgenN{a}\, \underv} | ||||
|     \cE_{\kmkrgenN{a}\, \underv} | ||||
|     \\ | ||||
|     & \times | ||||
|     \qty( \cE_{k_-krgenN{b}\, \underw} \pm \cE_{k_-krgenN{b}\, \underz} ) | ||||
|     \qty( \cE_{\kmkrgenN{b}\, \underw} \pm \cE_{\kmkrgenN{b}\, \underz} ) | ||||
|     \\ | ||||
|     & - | ||||
|     \cE_{k_-krgenN{b}\, \underv} | ||||
|     \cE_{\kmkrgenN{b}\, \underv} | ||||
|     \\ | ||||
|     & \times | ||||
|     \qty( \cE_{k_-krgenN{a}\, \underw} \pm \cE_{k_-krgenN{a}\, \underz} ) | ||||
|     \qty( \cE_{\kmkrgenN{a}\, \underw} \pm \cE_{\kmkrgenN{a}\, \underz} ) | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| for simplicity. | ||||
| @@ -3931,6 +3934,8 @@ Now we use the basic trick used in Poisson resummation | ||||
|     \abs{\frac{k_+ x^+}{k_- x^-}}^{-i \frac{l}{2 \Delta} }\, | ||||
|     \infinfint{s} | ||||
|     e^{i\, 2 \pi\, l\, s} | ||||
|     \\ | ||||
|     & \times | ||||
|     e^{i\, \sgn(k_+\, x^+) \sqrt{\abs{k_+ k_- x^+ x^-}} | ||||
|       \qty{ | ||||
|         \Lambda^s | ||||
| @@ -3973,7 +3978,7 @@ Now we use the basic trick used in Poisson resummation | ||||
| \end{equation} | ||||
| where the last line represents the change of quantum number from $m\, \beta$ to $m\, l$ and allows us to identify | ||||
| \begin{equation} | ||||
|   \cN_{\text{BO}} | ||||
|   \cN_{\text{BO}}\, | ||||
|   \tphi_{\lsi}(\tau) | ||||
|   = | ||||
|   \frac{1}{2\pi}\, | ||||
|   | ||||
							
								
								
									
										
											BIN
										
									
								
								thesis.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								thesis.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
		Reference in New Issue
	
	Block a user