Correct typo with regex
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -287,14 +287,14 @@ We therefore have | |||||||
| \end{equation} | \end{equation} | ||||||
| Using Fourier transforms it follows that the eigenmodes are | Using Fourier transforms it follows that the eigenmodes are | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x}) |   \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x}) | ||||||
|   = |   = | ||||||
|   e^{i k_+ v + i l z + i \vec{k} \cdot \vec{x}}\, |   e^{i k_+ v + i l z + i \vec{k} \cdot \vec{x}}\, | ||||||
|   \tphi_{k_-kr}(u), |   \tphi_{\kmkr}(u), | ||||||
| \end{equation} | \end{equation} | ||||||
| with | with | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \tphi_{k_-kr}(u) |   \tphi_{\kmkr}(u) | ||||||
|   = |   = | ||||||
|   \frac{1}{\sqrt{\qty( 2 \pi )^D~ \abs{2 \Delta k_+\, u}}} |   \frac{1}{\sqrt{\qty( 2 \pi )^D~ \abs{2 \Delta k_+\, u}}} | ||||||
|   e^{ |   e^{ | ||||||
| @@ -304,7 +304,7 @@ with | |||||||
| \end{equation} | \end{equation} | ||||||
| and | and | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \phi^*_{k_-kr}\qty(u,\, v,\, z,\, \vec{x}) |   \phi^*_{\kmkr}\qty(u,\, v,\, z,\, \vec{x}) | ||||||
|   = |   = | ||||||
|   \phi_{\mkmkr}\qty(u,\, v,\, z,\, \vec{x}). |   \phi_{\mkmkr}\qty(u,\, v,\, z,\, \vec{x}). | ||||||
| \end{equation} | \end{equation} | ||||||
| @@ -312,7 +312,7 @@ We chose the numeric factor in order to get a canonical normalisation: | |||||||
| \begin{equation} | \begin{equation} | ||||||
|   \begin{split} |   \begin{split} | ||||||
|     & |     & | ||||||
|     \qty( \phi_{k_-krN{1}},\,  \phi_{k_-krN{2}} ) |     \qty( \phi_{\kmkrN{1}},\,  \phi_{\kmkrN{2}} ) | ||||||
|     \\ |     \\ | ||||||
|     = & |     = & | ||||||
|     \int\limits_{\R^{D-3}} \dd[D-3]{\vec{x}}\, |     \int\limits_{\R^{D-3}} \dd[D-3]{\vec{x}}\, | ||||||
| @@ -320,7 +320,7 @@ We chose the numeric factor in order to get a canonical normalisation: | |||||||
|     \infinfint{v}\, |     \infinfint{v}\, | ||||||
|     \finiteint{z}{0}{2\pi} |     \finiteint{z}{0}{2\pi} | ||||||
|     \abs{\Delta u}\, |     \abs{\Delta u}\, | ||||||
|     \phi_{k_-krN{1}}\, \phi_{k_-krN{2}} |     \phi_{\kmkrN{1}}\, \phi_{\kmkrN{2}} | ||||||
|     \\ |     \\ | ||||||
|     = & |     = & | ||||||
|     \delta^{D-3}( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)})\, |     \delta^{D-3}( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)})\, | ||||||
| @@ -337,8 +337,8 @@ We can then perform the off-shell expansion | |||||||
|   \infinfint{k_+} |   \infinfint{k_+} | ||||||
|   \infinfint{r} |   \infinfint{r} | ||||||
|   \infinfsum{l} |   \infinfsum{l} | ||||||
|   \cA_{k_-kr}\, |   \cA_{\kmkr}\, | ||||||
|   \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x}), |   \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x}), | ||||||
| \end{equation} | \end{equation} | ||||||
| such that the scalar kinetic term becomes  | such that the scalar kinetic term becomes  | ||||||
| \begin{equation} | \begin{equation} | ||||||
| @@ -349,8 +349,8 @@ such that the scalar kinetic term becomes | |||||||
|   \infinfint{r} |   \infinfint{r} | ||||||
|   \infinfsum{l} |   \infinfsum{l} | ||||||
|   \qty(r - M^2)\, |   \qty(r - M^2)\, | ||||||
|   \cA_{k_-kr}\, |   \cA_{\kmkr}\, | ||||||
|   \cA_{k_-kr}^*. |   \cA_{\kmkr}^*. | ||||||
| \end{equation} | \end{equation} | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -461,7 +461,7 @@ We proceed hierarchically: first we solve for $a_v$ and $a_i$ whose equations ar | |||||||
| We get the solutions: | We get the solutions: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \begin{split} |   \begin{split} | ||||||
|     \norm{\tildea_{k_-kr\, \alpha}(u)} |     \norm{\tildea_{\kmkr\, \alpha}(u)} | ||||||
|     \,= |     \,= | ||||||
|     \mqty(% |     \mqty(% | ||||||
|       \tildea_u |       \tildea_u | ||||||
| @@ -479,7 +479,7 @@ We get the solutions: | |||||||
|       \qty{ \underu, \underv, \underz,\underi } |       \qty{ \underu, \underv, \underz,\underi } | ||||||
|     } |     } | ||||||
|     \pol{\alpha} |     \pol{\alpha} | ||||||
|     \norm{\tildea^{\underline{\alpha}}_{k_-kr\, \alpha}(u)} |     \norm{\tildea^{\underline{\alpha}}_{\kmkr\, \alpha}(u)} | ||||||
|     \\ |     \\ | ||||||
|     & = |     & = | ||||||
|     \pol{u} |     \pol{u} | ||||||
| @@ -492,7 +492,7 @@ We get the solutions: | |||||||
|       \\ |       \\ | ||||||
|       0 |       0 | ||||||
|     )\, |     )\, | ||||||
|     \tphi_{k_-kr}(u) |     \tphi_{\kmkr}(u) | ||||||
|     \\ |     \\ | ||||||
|     & + |     & + | ||||||
|     \pol{v} |     \pol{v} | ||||||
| @@ -507,7 +507,7 @@ We get the solutions: | |||||||
|       \\ |       \\ | ||||||
|       0 |       0 | ||||||
|     )\, |     )\, | ||||||
|     \tphi_{k_-kr}(u) |     \tphi_{\kmkr}(u) | ||||||
|     \\ |     \\ | ||||||
|     & + |     & + | ||||||
|     \pol{z} |     \pol{z} | ||||||
| @@ -520,7 +520,7 @@ We get the solutions: | |||||||
|       \\ |       \\ | ||||||
|       0 |       0 | ||||||
|     )\, |     )\, | ||||||
|     \tphi_{k_-kr}(u) |     \tphi_{\kmkr}(u) | ||||||
|     \\ |     \\ | ||||||
|     & + |     & + | ||||||
|     \pol{j} |     \pol{j} | ||||||
| @@ -533,7 +533,7 @@ We get the solutions: | |||||||
|       \\ |       \\ | ||||||
|       \delta_{\underline{ij}} |       \delta_{\underline{ij}} | ||||||
|     )\, |     )\, | ||||||
|     \tphi_{k_-kr}(u), |     \tphi_{\kmkr}(u), | ||||||
|     \label{eq:Orbifold_spin1_pol} |     \label{eq:Orbifold_spin1_pol} | ||||||
|   \end{split} |   \end{split} | ||||||
| \end{equation} | \end{equation} | ||||||
| @@ -549,13 +549,13 @@ then we can expand the off-shell fields as | |||||||
|   } |   } | ||||||
|   \infinfsum{l} |   \infinfsum{l} | ||||||
|   \pol{\alpha}\, |   \pol{\alpha}\, | ||||||
|   {a}^{\underline{\alpha}}_{k_-kr\, \alpha}\qty(u,\, v,\, z,\, \vec{x} ), |   {a}^{\underline{\alpha}}_{\kmkr\, \alpha}\qty(u,\, v,\, z,\, \vec{x} ), | ||||||
| \end{equation} | \end{equation} | ||||||
| where | where | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   a^{\underline{\alpha}}_{k_-kr\, \alpha}\qty(u,\, v,\, z,\, \vec{x}) |   a^{\underline{\alpha}}_{\kmkr\, \alpha}\qty(u,\, v,\, z,\, \vec{x}) | ||||||
|   = |   = | ||||||
|   \tildea^{\underline{\alpha}}_{k_-kr\, \alpha}(u)\, |   \tildea^{\underline{\alpha}}_{\kmkr\, \alpha}(u)\, | ||||||
|   e^{i\, \qty( k_+ v + l z + \vec{k} \cdot \vec{x})} |   e^{i\, \qty( k_+ v + l z + \vec{k} \cdot \vec{x})} | ||||||
| \end{equation} | \end{equation} | ||||||
| and $\int \ccD k = \int\limits_{\R^{D-3}} \dd[D-3]{\vec{k}} \infinfint{k_+} \infinfint{r}$. | and $\int \ccD k = \int\limits_{\R^{D-3}} \dd[D-3]{\vec{k}} \infinfint{k_+} \infinfint{r}$. | ||||||
| @@ -573,7 +573,7 @@ We can also compute the normalisation as | |||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     g^{\alpha\beta}\, |     g^{\alpha\beta}\, | ||||||
|     a_{k_-krN{1}\, \alpha}\,  a_{k_-krN{2}\, \beta} |     a_{\kmkrN{1}\, \alpha}\,  a_{\kmkrN{2}\, \beta} | ||||||
|     \\ |     \\ | ||||||
|     & = |     & = | ||||||
|     \genpolN{1} \circ \genpolN{2} |     \genpolN{1} \circ \genpolN{2} | ||||||
| @@ -624,9 +624,9 @@ The photon kinetic term becomes | |||||||
|   \infinfint{r} |   \infinfint{r} | ||||||
|   \infinfsum{l}\, |   \infinfsum{l}\, | ||||||
|   \frac{r}{2}\, |   \frac{r}{2}\, | ||||||
|   \cE_{k_-kr}\, |   \cE_{\kmkr}\, | ||||||
|   \circ |   \circ | ||||||
|   \cE_{k_-kr}^*. |   \cE_{\kmkr}^*. | ||||||
| \end{equation} | \end{equation} | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -654,7 +654,7 @@ Its computation involves integrals such as | |||||||
|   \int \dd{u}\, |   \int \dd{u}\, | ||||||
|   \abs{\Delta u}\, |   \abs{\Delta u}\, | ||||||
|   \qty(\frac{l}{u})^2 |   \qty(\frac{l}{u})^2 | ||||||
|   \finiteprod{i}{1}{3} \tphi_{k_-krN{i}} |   \finiteprod{i}{1}{3} \tphi_{\kmkrN{i}} | ||||||
|   \sim |   \sim | ||||||
|   \int\limits_{u \sim 0} \dd{u}\,  |   \int\limits_{u \sim 0} \dd{u}\,  | ||||||
|   \qty(\frac{l^2}{\abs{u}^{\frac{5}{2}}}) |   \qty(\frac{l^2}{\abs{u}^{\frac{5}{2}}}) | ||||||
| @@ -668,7 +668,7 @@ and | |||||||
|   \int \dd{u}\, |   \int \dd{u}\, | ||||||
|   \abs{\Delta u}\, |   \abs{\Delta u}\, | ||||||
|   \qty(\frac{1}{u}) |   \qty(\frac{1}{u}) | ||||||
|   \finiteprod{i}{1}{3} \tphi_{k_-krN{i}} |   \finiteprod{i}{1}{3} \tphi_{\kmkrN{i}} | ||||||
|   \sim |   \sim | ||||||
|   \int\limits_{u \sim 0} \dd{u}\,  |   \int\limits_{u \sim 0} \dd{u}\,  | ||||||
|   \qty(\frac{1}{u\, \abs{u}^{\frac{1}{2}}}) |   \qty(\frac{1}{u\, \abs{u}^{\frac{1}{2}}}) | ||||||
| @@ -720,7 +720,7 @@ and we get:\footnotemark{} | |||||||
|     \delta_{\finitesum{i}{1}{3} l_{\qty(i)},\, 0}\, |     \delta_{\finitesum{i}{1}{3} l_{\qty(i)},\, 0}\, | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \qty(\cA_{\mkmkrN{2}})^*\, \cA_{k_-krN{3}} |     \qty(\cA_{\mkmkrN{2}})^*\, \cA_{\kmkrN{3}} | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \Biggl\lbrace |     \Biggl\lbrace | ||||||
| @@ -782,19 +782,19 @@ In the previous expressions we also defined for future use: | |||||||
|   \infinfint{u}\, |   \infinfint{u}\, | ||||||
|   \abs{\Delta u}\, u^{\nu}\, |   \abs{\Delta u}\, u^{\nu}\, | ||||||
|   \finiteprod{i}{1}{N} |   \finiteprod{i}{1}{N} | ||||||
|   \tphi_{k_-krN{i}} |   \tphi_{\kmkrN{i}} | ||||||
|   \\ |   \\ | ||||||
|   \cJ_{\qty{N}}^{\qty[\nu]} |   \cJ_{\qty{N}}^{\qty[\nu]} | ||||||
|   & = & |   & = & | ||||||
|   \infinfint{u}\, |   \infinfint{u}\, | ||||||
|   \abs{\Delta}\, \abs{u}^{1 + \nu} |   \abs{\Delta}\, \abs{u}^{1 + \nu} | ||||||
|   \finiteprod{i}{1}{N} \tphi_{k_-krN{i}}. |   \finiteprod{i}{1}{N} \tphi_{\kmkrN{i}}. | ||||||
| \end{eqnarray} | \end{eqnarray} | ||||||
| For the sake of brevity from now on we use | For the sake of brevity from now on we use | ||||||
| \begin{eqnarray} | \begin{eqnarray} | ||||||
|   \tphi_{\qty(i)} & = & \tphi_{k_-krN{i}}, |   \tphi_{\qty(i)} & = & \tphi_{\kmkrN{i}}, | ||||||
|   \\ |   \\ | ||||||
|   \tphi_{\qty(i)} & = & \tphi_{k_-krN{i}} |   \tphi_{\qty(i)} & = & \tphi_{\kmkrN{i}} | ||||||
| \end{eqnarray} | \end{eqnarray} | ||||||
| when not causing confusion. | when not causing confusion. | ||||||
|  |  | ||||||
| @@ -835,7 +835,7 @@ which can be expressed using the modes as: | |||||||
|     & \times |     & \times | ||||||
|     \Biggl\lbrace |     \Biggl\lbrace | ||||||
|       e^2\, |       e^2\, | ||||||
|       \qty(\cA_{\mkmkrN{3}})^* \cA_{k_-krN{4}} |       \qty(\cA_{\mkmkrN{3}})^* \cA_{\kmkrN{4}} | ||||||
|       \\ |       \\ | ||||||
|       & \times |       & \times | ||||||
|       \Biggl[ |       \Biggl[ | ||||||
| @@ -879,8 +879,8 @@ where | |||||||
|     \qty(\cA_{\mkmkrN{2}})^*\, |     \qty(\cA_{\mkmkrN{2}})^*\, | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \cA_{k_-krN{3}}\, |     \cA_{\kmkrN{3}}\, | ||||||
|     \cA_{k_-krN{4}}. |     \cA_{\kmkrN{4}}. | ||||||
|   \end{split} |   \end{split} | ||||||
| \end{equation} | \end{equation} | ||||||
| When setting $l_{\qty(*)} = 0$ all the surviving terms are divergent. | When setting $l_{\qty(*)} = 0$ all the surviving terms are divergent. | ||||||
| @@ -896,12 +896,12 @@ From the discussion in the previous section the origin of the divergences is the | |||||||
| When $l = 0$ the highest order singularity of the Fourier transformed d'Alembertian equation vanishes. | When $l = 0$ the highest order singularity of the Fourier transformed d'Alembertian equation vanishes. | ||||||
| Explicitly we have: | Explicitly we have: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   A\, \ipd{u} \tphi_{k_-kr} |   A\, \ipd{u} \tphi_{\kmkr} | ||||||
|   + |   + | ||||||
|   B(u)\, \tphi_{k_-kr} |   B(u)\, \tphi_{\kmkr} | ||||||
|   = |   = | ||||||
|   A\, e^{-\int^u \frac{B(u)}{A} du}\,  |   A\, e^{-\int^u \frac{B(u)}{A} du}\,  | ||||||
|   \ipd{u} \qty[ e^{+\int^u \frac{B(u)}{A} du} \tphi_{k_-kr} ] |   \ipd{u} \qty[ e^{+\int^u \frac{B(u)}{A} du} \tphi_{\kmkr} ] | ||||||
|   = |   = | ||||||
|   0, |   0, | ||||||
| \end{equation} | \end{equation} | ||||||
| @@ -1269,7 +1269,7 @@ to finally get:\footnotemark{} | |||||||
|     & = |     & = | ||||||
|     \cN\, |     \cN\, | ||||||
|     \infinfsum{l} |     \infinfsum{l} | ||||||
|     \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})     |     \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})     | ||||||
|     e^{i\, l\, \frac{k_2}{\Delta k_+}}, |     e^{i\, l\, \frac{k_2}{\Delta k_+}}, | ||||||
|   \end{split} |   \end{split} | ||||||
| \label{eq:Psi_phi} | \label{eq:Psi_phi} | ||||||
| @@ -1284,7 +1284,7 @@ when $k_+ \neq 0$ and where | |||||||
| The fact that $\Psi$ depends only on the equivalence class $\qty[k_+\, k_-\, k_2\, k]$ allows us to restrict $0 \le \frac{k_2}{\Delta\, \abs{k_+}} < 2 \pi$ so that we can invert the previous expression and get: | The fact that $\Psi$ depends only on the equivalence class $\qty[k_+\, k_-\, k_2\, k]$ allows us to restrict $0 \le \frac{k_2}{\Delta\, \abs{k_+}} < 2 \pi$ so that we can invert the previous expression and get: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \begin{split} |   \begin{split} | ||||||
|     \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})     |     \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})     | ||||||
|     & = |     & = | ||||||
|     \frac{1}{\cN}\, |     \frac{1}{\cN}\, | ||||||
|     \frac{1}{2 \pi \Delta \abs{k_+}} |     \frac{1}{2 \pi \Delta \abs{k_+}} | ||||||
| @@ -1336,7 +1336,7 @@ The explicit expression for the eigenfunction with constant $\epsilon_+$, $\epsi | |||||||
|     } |     } | ||||||
|     \\ |     \\ | ||||||
|     & = |     & = | ||||||
|     \cN |     \cN\, | ||||||
|     \psi^{[1]}_{k_+\, k_-\, k_2;\, \epsilon_+\, \epsilon_-\, \epsilon_2}\qty(u,\, v,\, z), |     \psi^{[1]}_{k_+\, k_-\, k_2;\, \epsilon_+\, \epsilon_-\, \epsilon_2}\qty(u,\, v,\, z), | ||||||
|   \end{split} |   \end{split} | ||||||
| \end{equation} | \end{equation} | ||||||
| @@ -1370,7 +1370,7 @@ Building the corresponding function on the orbifold amounts to summing the image | |||||||
|     \psi_{k}\qty( \cK^n x) |     \psi_{k}\qty( \cK^n x) | ||||||
|     = |     = | ||||||
|     \infinfsum{n} |     \infinfsum{n} | ||||||
|     \cK^{-n} |     \cK^{-n}\, | ||||||
|     \vec{\epsilon} \cdot \dd{x}~ |     \vec{\epsilon} \cdot \dd{x}~ | ||||||
|     \psi_{\cK^{-n} k}\qty(x). |     \psi_{\cK^{-n} k}\qty(x). | ||||||
|   \end{split} |   \end{split} | ||||||
| @@ -1508,7 +1508,7 @@ Then it follows that | |||||||
|   \label{eq:a_uvz_from_covering} |   \label{eq:a_uvz_from_covering} | ||||||
| \end{equation} | \end{equation} | ||||||
| Many coefficients of $\Psi$ or its derivatives contain $k_2$.  | Many coefficients of $\Psi$ or its derivatives contain $k_2$.  | ||||||
| They cannot be expressed using the quantum numbers $k_-kr$ of the orbifold but are invariant on it. | They cannot be expressed using the quantum numbers $\kmkr$ of the orbifold but are invariant on it. | ||||||
| They are new orbifold quantities we interpret as orbifold polarisations. | They are new orbifold quantities we interpret as orbifold polarisations. | ||||||
| Using~\eqref{eq:Psi_phi} we can finally write | Using~\eqref{eq:Psi_phi} we can finally write | ||||||
| \begin{equation} | \begin{equation} | ||||||
| @@ -1516,7 +1516,7 @@ Using~\eqref{eq:Psi_phi} we can finally write | |||||||
|     \Psi^{[1]}_{[k,\, \epsilon]}\qty(\qty[x]) |     \Psi^{[1]}_{[k,\, \epsilon]}\qty(\qty[x]) | ||||||
|     & = |     & = | ||||||
|     \infinfsum{l} |     \infinfsum{l} | ||||||
|     \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})     |     \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})     | ||||||
|     e^{i\, l \frac{k_2}{\Delta k_+}} |     e^{i\, l \frac{k_2}{\Delta k_+}} | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
| @@ -1931,7 +1931,7 @@ The final expression for the orbifold symmetric tensor is | |||||||
|     \Psi^{[2]}_{\qty[\vec{k},\, S]}\qty(\qty[x]) |     \Psi^{[2]}_{\qty[\vec{k},\, S]}\qty(\qty[x]) | ||||||
|     & = |     & = | ||||||
|     \infinfsum{l} |     \infinfsum{l} | ||||||
|     \phi_{k_-kr}\qty(u,\, v,\, z,\, \vec{x})     |     \phi_{\kmkr}\qty(u,\, v,\, z,\, \vec{x})     | ||||||
|     e^{i\, l \frac{k_2}{\Delta k_+}} |     e^{i\, l \frac{k_2}{\Delta k_+}} | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
| @@ -2870,26 +2870,29 @@ We therefore need solve: | |||||||
| \end{equation} | \end{equation} | ||||||
| To this purpose, we introduce a Fourier transformation over $v,\, w,\, z,\, \vec{x}$: | To this purpose, we introduce a Fourier transformation over $v,\, w,\, z,\, \vec{x}$: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \phi_r\qty( u,\, v,\, w,\, z,\, \vec{x}) |   \begin{split} | ||||||
|   = |     & \phi_r\qty( u,\, v,\, w,\, z,\, \vec{x}) | ||||||
|   \infinfsum{l}\, |     \\ | ||||||
|   \int\limits_{\R^{D-4}} \dd[D-4]{\vec{k}} |     & = | ||||||
|   \infinfint{k_+} |     \infinfsum{l}\, | ||||||
|   \infinfint{p}\, |     \int\limits_{\R^{D-4}} \dd[D-4]{\vec{k}} | ||||||
|   e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )} |     \infinfint{k_+} | ||||||
|   \tphi_{k_-krgen}(u), |     \infinfint{p}\, | ||||||
|  |     e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )} | ||||||
|  |     \tphi_{\kmkrgen}(u), | ||||||
|  |   \end{split} | ||||||
| \end{equation} | \end{equation} | ||||||
| where we defined $k_+,\, p,\, l,\, \vec{k}$ as associated momenta to $v,\, w,\, z,\, \vec{x}$ respectively. | where we defined $k_+,\, p,\, l,\, \vec{k}$ as associated momenta to $v,\, w,\, z,\, \vec{x}$ respectively. | ||||||
| We find: | We find: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \phi_{k_-krgen}\qty( u,\, v,\, w,\, z,\, \vec{x} ) |   \phi_{\kmkrgen}\qty( u,\, v,\, w,\, z,\, \vec{x} ) | ||||||
|   = |   = | ||||||
|   e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )} |   e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )} | ||||||
|   \tphi_{k_-krgen}( u ). |   \tphi_{\kmkrgen}( u ). | ||||||
| \end{equation} | \end{equation} | ||||||
| where | where | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \tphi_{k_-krgen}( u ) |   \tphi_{\kmkrgen}( u ) | ||||||
|   = |   = | ||||||
|   \frac{1}{2 \sqrt{\qty(2 \pi)^D \abs{\Delta_2 \Delta_3 k_+}}}\, |   \frac{1}{2 \sqrt{\qty(2 \pi)^D \abs{\Delta_2 \Delta_3 k_+}}}\, | ||||||
|   \frac{1}{\abs{u}} |   \frac{1}{\abs{u}} | ||||||
| @@ -2906,7 +2909,7 @@ where | |||||||
| These solutions present the right normalisation, as we can verify through the product: | These solutions present the right normalisation, as we can verify through the product: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \begin{split} |   \begin{split} | ||||||
|     & \left( \phi_{k_-krgenN{1}},\, \phi_{k_-krgenN{2}} \right) |     & \left( \phi_{\kmkrgenN{1}},\, \phi_{\kmkrgenN{2}} \right) | ||||||
|     \\ |     \\ | ||||||
|     & = |     & = | ||||||
|     \int\limits_{\R^{D-4}} \dd[D-4]{\vec{x}} |     \int\limits_{\R^{D-4}} \dd[D-4]{\vec{x}} | ||||||
| @@ -2917,8 +2920,8 @@ These solutions present the right normalisation, as we can verify through the pr | |||||||
|     2 \abs{\Delta_2 \Delta_3} u^2 |     2 \abs{\Delta_2 \Delta_3} u^2 | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \phi_{k_-krgenN{1}}~ |     \phi_{\kmkrgenN{1}}~ | ||||||
|     \phi_{k_-krgenN{2}} |     \phi_{\kmkrgenN{2}} | ||||||
|     \\ |     \\ | ||||||
|     & = |     & = | ||||||
|     \delta^{D - 4}\qty( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)} )\, |     \delta^{D - 4}\qty( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)} )\, | ||||||
| @@ -2942,7 +2945,7 @@ Then we have the off-shell expansion: | |||||||
|     \infinfint{r} |     \infinfint{r} | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \frac{\cA_{k_-krgen}}{\abs{u}} |     \frac{\cA_{\kmkrgen}}{\abs{u}} | ||||||
|     e^{% |     e^{% | ||||||
|       i\, \qty(% |       i\, \qty(% | ||||||
|         k_+ v + p w + l z + \vec{k} \cdot \vec{x} |         k_+ v + p w + l z + \vec{k} \cdot \vec{x} | ||||||
| @@ -3115,15 +3118,15 @@ These equations can be solved using standard techniques through a Fourier transf | |||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )} |     e^{i\, \qty( k_+ v + p w + l z + \vec{k} \cdot \vec{x} )} | ||||||
|     \tildea_{k_-krgen\, \alpha}(u). |     \tildea_{\kmkrgen\, \alpha}(u). | ||||||
|   \end{split} |   \end{split} | ||||||
| \end{equation} | \end{equation} | ||||||
| We first solve the equations for $\tildea_{k_-krgen\, v}$ and $\tildea_{k_-krgen\, i}$ since they are identical to the scalar equation~\eqref{eq:scalar_eom}. | We first solve the equations for $\tildea_{\kmkrgen\, v}$ and $\tildea_{\kmkrgen\, i}$ since they are identical to the scalar equation~\eqref{eq:scalar_eom}. | ||||||
| We then insert their solutions as sources for the equations for $\tildea_{k_-krgen\, u}$, $\tildea_{k_-krgen\, w}$ and $\tildea_{k_-krgen\, z}$. | We then insert their solutions as sources for the equations for $\tildea_{\kmkrgen\, u}$, $\tildea_{\kmkrgen\, w}$ and $\tildea_{\kmkrgen\, z}$. | ||||||
| The solutions can be written as the expansion: | The solutions can be written as the expansion: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \begin{split} |   \begin{split} | ||||||
|     \norm{\tildea_{k_-krgen\, \alpha}(u)} |     \norm{\tildea_{\kmkrgen\, \alpha}(u)} | ||||||
|     & = |     & = | ||||||
|     \mqty(% |     \mqty(% | ||||||
|       \tildea_u |       \tildea_u | ||||||
| @@ -3139,16 +3142,16 @@ The solutions can be written as the expansion: | |||||||
|     \\ |     \\ | ||||||
|     & = |     & = | ||||||
|     \sum\limits_{\ualpha \in \qty{\underu, \underv, \underw, \underz, \underi}} |     \sum\limits_{\ualpha \in \qty{\underu, \underv, \underw, \underz, \underi}} | ||||||
|     \cE_{k_-krgen\, \ualpha}\, |     \cE_{\kmkrgen\, \ualpha}\, | ||||||
|     \norm{\tildea^{\ualpha}_{k_-krgen\, \alpha}(u)} |     \norm{\tildea^{\ualpha}_{\kmkrgen\, \alpha}(u)} | ||||||
|     \\ |     \\ | ||||||
|     & = |     & = | ||||||
|     \cE_{k_-krgen\, \underu}\, |     \cE_{\kmkrgen\, \underu}\, | ||||||
|     \mqty( 1 \\ 0 \\ 0 \\ 0 \\ 0 )\, |     \mqty( 1 \\ 0 \\ 0 \\ 0 \\ 0 )\, | ||||||
|     \tphi_{k_-krgen} |     \tphi_{\kmkrgen} | ||||||
|     \\ |     \\ | ||||||
|     & + |     & + | ||||||
|     \cE_{k_-krgen\, \underv}\, |     \cE_{\kmkrgen\, \underv}\, | ||||||
|     \mqty(% |     \mqty(% | ||||||
|       \frac{i}{2 k_+ u} |       \frac{i}{2 k_+ u} | ||||||
|       + |       + | ||||||
| @@ -3163,10 +3166,10 @@ The solutions can be written as the expansion: | |||||||
|       \\ |       \\ | ||||||
|       0 |       0 | ||||||
|     )\, |     )\, | ||||||
|     \tphi_{k_-krgen} |     \tphi_{\kmkrgen} | ||||||
|     \\ |     \\ | ||||||
|     & + |     & + | ||||||
|     \cE_{k_-krgen\, \underw}\, |     \cE_{\kmkrgen\, \underw}\, | ||||||
|     \mqty( |     \mqty( | ||||||
|       \frac{1}{4 k_+ \abs{u}} |       \frac{1}{4 k_+ \abs{u}} | ||||||
|       \qty( \frac{l + p}{\Delta_2^2} - \frac{l - p}{\Delta_3^2} ) |       \qty( \frac{l + p}{\Delta_2^2} - \frac{l - p}{\Delta_3^2} ) | ||||||
| @@ -3179,10 +3182,10 @@ The solutions can be written as the expansion: | |||||||
|       \\ |       \\ | ||||||
|       0 |       0 | ||||||
|     )\, |     )\, | ||||||
|     \tphi_{k_-krgen} |     \tphi_{\kmkrgen} | ||||||
|     \\ |     \\ | ||||||
|     & + |     & + | ||||||
|     \cE_{k_-krgen\, \underz}\, |     \cE_{\kmkrgen\, \underz}\, | ||||||
|     \mqty( |     \mqty( | ||||||
|       \frac{1}{4 k_+ \abs{u}} |       \frac{1}{4 k_+ \abs{u}} | ||||||
|       \qty( \frac{l + p}{\Delta_2^2} + \frac{l - p}{\Delta_3^2} ) |       \qty( \frac{l + p}{\Delta_2^2} + \frac{l - p}{\Delta_3^2} ) | ||||||
| @@ -3195,20 +3198,20 @@ The solutions can be written as the expansion: | |||||||
|       \\ |       \\ | ||||||
|       0 |       0 | ||||||
|     )\, |     )\, | ||||||
|     \tphi_{k_-krgen} |     \tphi_{\kmkrgen} | ||||||
|     \\ |     \\ | ||||||
|     & + |     & + | ||||||
|     \cE_{k_-krgen\, \underj}\, |     \cE_{\kmkrgen\, \underj}\, | ||||||
|     \mqty( 0 \\ 0 \\ 0 \\ 0 \\ \delta_{\underline{i j}} )\, |     \mqty( 0 \\ 0 \\ 0 \\ 0 \\ \delta_{\underline{i j}} )\, | ||||||
|     \tphi_{k_-krgen} |     \tphi_{\kmkrgen} | ||||||
|   \end{split} |   \end{split} | ||||||
| \end{equation} | \end{equation} | ||||||
| Consider the Fourier transformed functions: | Consider the Fourier transformed functions: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   a^{\ualpha}_{k_-krgen\, \alpha}\qty( u,\, v,\, w,\, z,\, \vec{x} ) |   a^{\ualpha}_{\kmkrgen\, \alpha}\qty( u,\, v,\, w,\, z,\, \vec{x} ) | ||||||
|   = |   = | ||||||
|   e^{i\, \qty(k_+ v + p w + l z + \vec{k} \cdot \vec{x})} |   e^{i\, \qty(k_+ v + p w + l z + \vec{k} \cdot \vec{x})} | ||||||
|   \tildea^{\ualpha}_{k_-krgen\, \alpha}( u ), |   \tildea^{\ualpha}_{\kmkrgen\, \alpha}( u ), | ||||||
| \end{equation} | \end{equation} | ||||||
| then we can expand the off shell fields as | then we can expand the off shell fields as | ||||||
| \begin{equation} | \begin{equation} | ||||||
| @@ -3223,8 +3226,8 @@ then we can expand the off shell fields as | |||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \sum_{\ualpha \in \qty{\underu, \underv, \underw, \underz, \underi}} |     \sum_{\ualpha \in \qty{\underu, \underv, \underw, \underz, \underi}} | ||||||
|     \cE_{k_-krgen\, \alpha}\, |     \cE_{\kmkrgen\, \alpha}\, | ||||||
|     a^{\ualpha}_{k_-krgen\, \alpha}(x). |     a^{\ualpha}_{\kmkrgen\, \alpha}(x). | ||||||
|   \end{split} |   \end{split} | ||||||
| \end{equation} | \end{equation} | ||||||
|  |  | ||||||
| @@ -3241,7 +3244,7 @@ We can compute the normalisation as: | |||||||
|     2 \abs{\Delta_2 \Delta_3} u^2 |     2 \abs{\Delta_2 \Delta_3} u^2 | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \qty(g^{\alpha\beta}\, a_{k_-krgenN{1}\, \alpha}\, a_{k_-krgenN{2}\, \beta}) |     \qty(g^{\alpha\beta}\, a_{\kmkrgenN{1}\, \alpha}\, a_{\kmkrgenN{2}\, \beta}) | ||||||
|     \\ |     \\ | ||||||
|     & = |     & = | ||||||
|     \delta^{D-4}\qty( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)} )\, |     \delta^{D-4}\qty( \vec{k}_{\qty(1)} + \vec{k}_{\qty(2)} )\, | ||||||
| @@ -3251,7 +3254,7 @@ We can compute the normalisation as: | |||||||
|     \delta\qty( r_1 - r_2 ) |     \delta\qty( r_1 - r_2 ) | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \cE_{k_-krgenN{1}} \circ \cE_{k_-krgenN{2}}, |     \cE_{\kmkrgenN{1}} \circ \cE_{\kmkrgenN{2}}, | ||||||
|   \end{split} |   \end{split} | ||||||
| \end{equation} | \end{equation} | ||||||
| where | where | ||||||
| @@ -3285,16 +3288,16 @@ where | |||||||
| is independent of the coordinates. | is independent of the coordinates. | ||||||
| The Lorenz gauge now reads: | The Lorenz gauge now reads: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \eta^{i\underj}\, k_i \, \cE_{{k_-krgen} \underj} |   \eta^{i\underj}\, k_i \, \cE_{{\kmkrgen} \underj} | ||||||
|   - |   - | ||||||
|   k_+ |   k_+ | ||||||
|   \cE_{k_-krgen\, \underu} |   \cE_{\kmkrgen\, \underu} | ||||||
|   - |   - | ||||||
|   \frac{\vec{k}^2 + r}{2 k_+} |   \frac{\vec{k}^2 + r}{2 k_+} | ||||||
|   \cE_{k_-krgen\, \underv} |   \cE_{\kmkrgen\, \underv} | ||||||
|   = 0. |   = 0. | ||||||
| \end{equation} | \end{equation} | ||||||
| As in the previous case, the constraint equation does not pose any condition on the transverse polarisations $\cE_{k_-krgen\, \underw}$ and $\cE_{k_-krgen\, \underz}$. | As in the previous case, the constraint equation does not pose any condition on the transverse polarisations $\cE_{\kmkrgen\, \underw}$ and $\cE_{\kmkrgen\, \underz}$. | ||||||
|  |  | ||||||
|  |  | ||||||
| \subsubsection{Cubic Interaction} | \subsubsection{Cubic Interaction} | ||||||
| @@ -3331,16 +3334,16 @@ In the case of the \gnbo we find: | |||||||
|     & \times |     & \times | ||||||
|     e~ |     e~ | ||||||
|     \cA^*_{\mkmkrgenN{2}} |     \cA^*_{\mkmkrgenN{2}} | ||||||
|     \cA_{k_-krgenN{3}} |     \cA_{\kmkrgenN{3}} | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \Biggl\lbrace |     \Biggl\lbrace | ||||||
|       \cE_{k_-krgenN{1}\, \underu}~ |       \cE_{\kmkrgenN{1}\, \underu}~ | ||||||
|       k_{\qty(2)\, +}~ |       k_{\qty(2)\, +}~ | ||||||
|       \cI_{\qty{3}}^{\qty[0]} |       \cI_{\qty{3}}^{\qty[0]} | ||||||
|       \\ |       \\ | ||||||
|       & + |       & + | ||||||
|       \cE_{k_-krgenN{1}\, \underv}~ |       \cE_{\kmkrgenN{1}\, \underv}~ | ||||||
|       \Biggl[ |       \Biggl[ | ||||||
|         \qty( \frac{\vec{k}_{\qty(2)}^2 + r_{(2)}}{2 k_{\qty(2)\, +}} )\, |         \qty( \frac{\vec{k}_{\qty(2)}^2 + r_{(2)}}{2 k_{\qty(2)\, +}} )\, | ||||||
|         \cI_{\qty{3}}^{\qty[0]} |         \cI_{\qty{3}}^{\qty[0]} | ||||||
| @@ -3370,7 +3373,7 @@ In the case of the \gnbo we find: | |||||||
|       \Biggr] |       \Biggr] | ||||||
|       \\ |       \\ | ||||||
|       & + |       & + | ||||||
|       \qty( \cE_{k_-krgenN{1}\, \underw} - \cE_{k_-krgenN{1}\, \underz} ) |       \qty( \cE_{\kmkrgenN{1}\, \underw} - \cE_{\kmkrgenN{1}\, \underz} ) | ||||||
|       \\ |       \\ | ||||||
|       & \times |       & \times | ||||||
|       \Biggl[ |       \Biggl[ | ||||||
| @@ -3402,18 +3405,18 @@ where we defined: | |||||||
|     \cI_{\qty{N}}^{\qty[\nu]} |     \cI_{\qty{N}}^{\qty[\nu]} | ||||||
|     & = |     & = | ||||||
|     \infinfint{u} |     \infinfint{u} | ||||||
|     2\, \abs{\Delta_2 \Delta_3} u^2\, u^{\nu}\, \finiteprod{i}{1}{N} \tphi_{k_-krgenN{i}}, |     2\, \abs{\Delta_2 \Delta_3} u^2\, u^{\nu}\, \finiteprod{i}{1}{N} \tphi_{\kmkrgenN{i}}, | ||||||
|     \\ |     \\ | ||||||
|     \cJ_{\qty{N}}^{\qty[\nu]} |     \cJ_{\qty{N}}^{\qty[\nu]} | ||||||
|     & = |     & = | ||||||
|     \infinfint{u} |     \infinfint{u} | ||||||
|     2\, \abs{\Delta_2 \Delta_3} u^2\, \abs{u}^{\nu}\, \finiteprod{i}{1}{N} \tphi_{k_-krgenN{i}}. |     2\, \abs{\Delta_2 \Delta_3} u^2\, \abs{u}^{\nu}\, \finiteprod{i}{1}{N} \tphi_{\kmkrgenN{i}}. | ||||||
|   \end{split} |   \end{split} | ||||||
| \end{equation} | \end{equation} | ||||||
|  |  | ||||||
|  |  | ||||||
| While in the \nbo case we need to regularise the integrals at least taking their principal part when all $l_{(*)} = 0$ in~\eqref{eq:nbo_div_integral}, the \gnbo does not need any specific manipulation. | While in the \nbo case we need to regularise the integrals at least taking their principal part when all $l_{(*)} = 0$ in~\eqref{eq:nbo_div_integral}, the \gnbo does not need any specific manipulation. | ||||||
| In fact the form of $\tphi_{k_-krgenN{i}}$ in~\eqref{eq:GNBO_reg_wave_functions} prevents the formation of isolated zeros in the phase factor proportional to $u^{-1}$: the presence of the continuous momentum $p$, contrary to the \nbo where all momenta are discrete, gives the integrals a distributional interpretation, similar to a derivative of a Dirac $\delta$ function. | In fact the form of $\tphi_{\kmkrgenN{i}}$ in~\eqref{eq:GNBO_reg_wave_functions} prevents the formation of isolated zeros in the phase factor proportional to $u^{-1}$: the presence of the continuous momentum $p$, contrary to the \nbo where all momenta are discrete, gives the integrals a distributional interpretation, similar to a derivative of a Dirac $\delta$ function. | ||||||
|  |  | ||||||
|  |  | ||||||
| \subsubsection{Quartic Interactions} | \subsubsection{Quartic Interactions} | ||||||
| @@ -3454,16 +3457,16 @@ As for the \nbo, we consider the quartic interaction for the scalar \qed action: | |||||||
|     \Biggl\lbrace |     \Biggl\lbrace | ||||||
|       e^2 |       e^2 | ||||||
|       \cA^*_{\mkmkrgenN{3}} |       \cA^*_{\mkmkrgenN{3}} | ||||||
|       \cA_{k_-krgenN{4}} |       \cA_{\kmkrgenN{4}} | ||||||
|       \\ |       \\ | ||||||
|       & \times |       & \times | ||||||
|       \Biggl[ |       \Biggl[ | ||||||
|         \cE_{k_-krgenN{1}} \circ \cE_{k_-krgenN{2}}\, |         \cE_{\kmkrgenN{1}} \circ \cE_{\kmkrgenN{2}}\, | ||||||
|         \cI_{\qty{4}}^{\qty[0]} |         \cI_{\qty{4}}^{\qty[0]} | ||||||
|         \\ |         \\ | ||||||
|         & - i |         & - i | ||||||
|         \cE_{k_-krgenN{1}\, \underv}\, |         \cE_{\kmkrgenN{1}\, \underv}\, | ||||||
|         \cE_{k_-krgenN{2}\, \underv} |         \cE_{\kmkrgenN{2}\, \underv} | ||||||
|         \\ |         \\ | ||||||
|         & \times |         & \times | ||||||
|         \Biggl( |         \Biggl( | ||||||
| @@ -3497,8 +3500,8 @@ As for the \nbo, we consider the quartic interaction for the scalar \qed action: | |||||||
|       \cA^*_{\mkmkrgenN{2}} |       \cA^*_{\mkmkrgenN{2}} | ||||||
|       \\ |       \\ | ||||||
|       & \times |       & \times | ||||||
|       \cA_{k_-krgenN{3}} |       \cA_{\kmkrgenN{3}} | ||||||
|       \cA_{k_-krgenN{4}} |       \cA_{\kmkrgenN{4}} | ||||||
|       \cI_{\qty{4}}^{\qty[0]} |       \cI_{\qty{4}}^{\qty[0]} | ||||||
|     \Biggr\rbrace, |     \Biggr\rbrace, | ||||||
|   \end{split} |   \end{split} | ||||||
| @@ -3514,16 +3517,16 @@ where we defined: | |||||||
|     \\ |     \\ | ||||||
|     \tilde{\cE}_{\pm\,\left( a, b \right)} |     \tilde{\cE}_{\pm\,\left( a, b \right)} | ||||||
|     & = |     & = | ||||||
|     \cE_{k_-krgenN{a}\, \underv} |     \cE_{\kmkrgenN{a}\, \underv} | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \qty( \cE_{k_-krgenN{b}\, \underw} \pm \cE_{k_-krgenN{b}\, \underz} ) |     \qty( \cE_{\kmkrgenN{b}\, \underw} \pm \cE_{\kmkrgenN{b}\, \underz} ) | ||||||
|     \\ |     \\ | ||||||
|     & - |     & - | ||||||
|     \cE_{k_-krgenN{b}\, \underv} |     \cE_{\kmkrgenN{b}\, \underv} | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \qty( \cE_{k_-krgenN{a}\, \underw} \pm \cE_{k_-krgenN{a}\, \underz} ) |     \qty( \cE_{\kmkrgenN{a}\, \underw} \pm \cE_{\kmkrgenN{a}\, \underz} ) | ||||||
|   \end{split} |   \end{split} | ||||||
| \end{equation} | \end{equation} | ||||||
| for simplicity. | for simplicity. | ||||||
| @@ -3931,6 +3934,8 @@ Now we use the basic trick used in Poisson resummation | |||||||
|     \abs{\frac{k_+ x^+}{k_- x^-}}^{-i \frac{l}{2 \Delta} }\, |     \abs{\frac{k_+ x^+}{k_- x^-}}^{-i \frac{l}{2 \Delta} }\, | ||||||
|     \infinfint{s} |     \infinfint{s} | ||||||
|     e^{i\, 2 \pi\, l\, s} |     e^{i\, 2 \pi\, l\, s} | ||||||
|  |     \\ | ||||||
|  |     & \times | ||||||
|     e^{i\, \sgn(k_+\, x^+) \sqrt{\abs{k_+ k_- x^+ x^-}} |     e^{i\, \sgn(k_+\, x^+) \sqrt{\abs{k_+ k_- x^+ x^-}} | ||||||
|       \qty{ |       \qty{ | ||||||
|         \Lambda^s |         \Lambda^s | ||||||
| @@ -3973,7 +3978,7 @@ Now we use the basic trick used in Poisson resummation | |||||||
| \end{equation} | \end{equation} | ||||||
| where the last line represents the change of quantum number from $m\, \beta$ to $m\, l$ and allows us to identify | where the last line represents the change of quantum number from $m\, \beta$ to $m\, l$ and allows us to identify | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \cN_{\text{BO}} |   \cN_{\text{BO}}\, | ||||||
|   \tphi_{\lsi}(\tau) |   \tphi_{\lsi}(\tau) | ||||||
|   = |   = | ||||||
|   \frac{1}{2\pi}\, |   \frac{1}{2\pi}\, | ||||||
|   | |||||||
							
								
								
									
										
											BIN
										
									
								
								thesis.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								thesis.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
		Reference in New Issue
	
	Block a user