Some additions on cosmology
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -4,6 +4,7 @@ | |||||||
| \RequirePackage{amsmath} %--------------------- math mode | \RequirePackage{amsmath} %--------------------- math mode | ||||||
| \RequirePackage{amssymb} %--------------------- math symbols | \RequirePackage{amssymb} %--------------------- math symbols | ||||||
| \RequirePackage{amsfonts} %-------------------- math fonts | \RequirePackage{amsfonts} %-------------------- math fonts | ||||||
|  | \RequirePackage{bm} %-------------------------- boldsymbols | ||||||
| \RequirePackage{mathtools} %------------------- mathematical tools | \RequirePackage{mathtools} %------------------- mathematical tools | ||||||
| \RequirePackage{mathrsfs} %-------------------- better cal | \RequirePackage{mathrsfs} %-------------------- better cal | ||||||
| \RequirePackage{slashed} %--------------------- slashed characters | \RequirePackage{slashed} %--------------------- slashed characters | ||||||
|   | |||||||
| @@ -3,53 +3,53 @@ In this appendix we explain the conventions used for \SU{2} and show the details | |||||||
|  |  | ||||||
| \subsection{Conventions} | \subsection{Conventions} | ||||||
|  |  | ||||||
| We parameterise \SU{2} matrices $U$ with a vector $\vb{n} \in \R^3$ such that: | We parameterise \SU{2} matrices $U$ with a vector $\vec{n} \in \R^3$ such that: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   U(\vb{n}) |   U(\vec{n}) | ||||||
|   = |   = | ||||||
|   \cos(2 \pi n)\, \1_2 |   \cos(2 \pi n)\, \1_2 | ||||||
|   + |   + | ||||||
|   i\, \frac{\vb{n} \cdot \vb{\sigma}}{n}\, \sin(2 \pi n), |   i\, \frac{\vec{n} \cdot \vec{\sigma}}{n}\, \sin(2 \pi n), | ||||||
|   \label{eq:su2parametrisation} |   \label{eq:su2parametrisation} | ||||||
| \end{equation} | \end{equation} | ||||||
| where $n = \norm{\vb{n}}$ and $0 \le n \le \frac{1}{2}$. | where $n = \norm{\vec{n}}$ and $0 \le n \le \frac{1}{2}$. | ||||||
| We also identify all $\vb{n}$ when $n=\frac{1}{2}$ since in this case $U(\vb{n})= -\1_2$. | We also identify all $\vec{n}$ when $n=\frac{1}{2}$ since in this case $U(\vec{n})= -\1_2$. | ||||||
| The parametrisation is such that: | The parametrisation is such that: | ||||||
| \begin{eqnarray} | \begin{eqnarray} | ||||||
|   U^*(\vb{n}) |   U^*(\vec{n}) | ||||||
|   & = & |   & = & | ||||||
|   \sigma^2\, U(\vb{n})\, \sigma^2 |   \sigma^2\, U(\vec{n})\, \sigma^2 | ||||||
|   = |   = | ||||||
|   U(\widetilde{\vb{n}}), |   U(\widetilde{\vec{n}}), | ||||||
|   \\ |   \\ | ||||||
|   U^{\dagger}(\vb{n}) |   U^{\dagger}(\vec{n}) | ||||||
|   & = & |   & = & | ||||||
|   U^T(\widetilde{\vb{n}}) |   U^T(\widetilde{\vec{n}}) | ||||||
|   = |   = | ||||||
|   U(-\vb{n}), |   U(-\vec{n}), | ||||||
|   \\ |   \\ | ||||||
|   -U(\vb{n}) |   -U(\vec{n}) | ||||||
|   & = & |   & = & | ||||||
|   U(\widehat{\vb{n}}) |   U(\widehat{\vec{n}}) | ||||||
|   \label{eq:U_props} |   \label{eq:U_props} | ||||||
| \end{eqnarray} | \end{eqnarray} | ||||||
| where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vb{n}} = \qty( -n^1, n^2, -n^3 )$ and $\widehat{\vb{n}} = - \qty(\frac{1}{2} -n )\, \frac{\vb{n}}{n}$. | where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vec{n}} = \qty( -n^1, n^2, -n^3 )$ and $\widehat{\vec{n}} = - \qty(\frac{1}{2} -n )\, \frac{\vec{n}}{n}$. | ||||||
|  |  | ||||||
| The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\,  U(\vb{m})$ has an explicit realisation as: | The group product of two elements $U(\vec{n} \circ \vec{m} ) = U(\vec{n})\,  U(\vec{m})$ has an explicit realisation as: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \begin{split} |   \begin{split} | ||||||
|     \cos(2 \pi \norm{\vb{n} \circ \vb{m}}) |     \cos(2 \pi \norm{\vec{n} \circ \vec{m}}) | ||||||
|     & = |     & = | ||||||
|     \cos(2 \pi n)\, \cos(2 \pi m) |     \cos(2 \pi n)\, \cos(2 \pi m) | ||||||
|     - |     - | ||||||
|     \sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{n} \cdot \vb{m}}{n\, m}, |     \sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vec{n} \cdot \vec{m}}{n\, m}, | ||||||
|     \\ |     \\ | ||||||
|     \sin(2 \pi \norm{\vb{n} \circ \vb{m}})\, |     \sin(2 \pi \norm{\vec{n} \circ \vec{m}})\, | ||||||
|     \frac{\vb{n} \circ \vb{m}}{\norm{\vb{n} \circ \vb{m}}} |     \frac{\vec{n} \circ \vec{m}}{\norm{\vec{n} \circ \vec{m}}} | ||||||
|     & = |     & = | ||||||
|     \cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{m}}{m} |     \cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vec{m}}{m} | ||||||
|     + |     + | ||||||
|     \sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vb{n}}{n}. |     \sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vec{n}}{n}. | ||||||
|   \end{split} |   \end{split} | ||||||
|   \label{eq:product_in_SU2} |   \label{eq:product_in_SU2} | ||||||
| \end{equation} | \end{equation} | ||||||
| @@ -58,9 +58,9 @@ The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\,  U(\vb{ | |||||||
|  |  | ||||||
| Let $I = 1,\, 2,\, 3,\, 4$ and define: | Let $I = 1,\, 2,\, 3,\, 4$ and define: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \tau_I = \qty( i\, \1_2,\, \vb{\sigma} ), |   \tau_I = \qty( i\, \1_2,\, \vec{\sigma} ), | ||||||
| \end{equation} | \end{equation} | ||||||
| where $\vb{\sigma} = \qty( \sigma^1,\, \sigma^2,\, \sigma^3 )$ are the Pauli matrices. | where $\vec{\sigma} = \qty( \sigma^1,\, \sigma^2,\, \sigma^3 )$ are the Pauli matrices. | ||||||
| It is possible to show that: | It is possible to show that: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \begin{split} |   \begin{split} | ||||||
| @@ -122,7 +122,7 @@ If the vector $X^I$ is real, using~\eqref{eq:tau_props} we have: | |||||||
|  |  | ||||||
| A rotation in spinor representation is defined as: | A rotation in spinor representation is defined as: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   X'_{(s)} = U_{L}(\vb{n})\, X_{(s)}\, U_{R}^{\dagger}(\vb{m}) |   X'_{(s)} = U_{L}(\vec{n})\, X_{(s)}\, U_{R}^{\dagger}(\vec{m}) | ||||||
| \end{equation} | \end{equation} | ||||||
| and it is equivalent to: | and it is equivalent to: | ||||||
| \begin{equation} | \begin{equation} | ||||||
| @@ -138,9 +138,9 @@ through | |||||||
|   \frac{1}{2} |   \frac{1}{2} | ||||||
|   \tr( |   \tr( | ||||||
|     \qty( \tau_I )^{\dagger}\, |     \qty( \tau_I )^{\dagger}\, | ||||||
|     U_{L}(\vb{n})\, |     U_{L}(\vec{n})\, | ||||||
|     \tau_J\, |     \tau_J\, | ||||||
|     U_{R}^{\dagger}(\vb{m}) |     U_{R}^{\dagger}(\vec{m}) | ||||||
|   ). |   ). | ||||||
| \end{equation} | \end{equation} | ||||||
| The matrix $R$ is the $4$-dimensional rotation matrix we are looking for since: | The matrix $R$ is the $4$-dimensional rotation matrix we are looking for since: | ||||||
|   | |||||||
| @@ -6,28 +6,28 @@ In this appendix we show the computation of the parameters of the hypergeometric | |||||||
| In the main text we set | In the main text we set | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   D~ |   D~ | ||||||
|   \rM_{\vb{\infty}}~ |   \rM_{\infty}~ | ||||||
|   D^{-1} |   D^{-1} | ||||||
|   = |   = | ||||||
|   e^{-2\pi i \delta_{\vb{\infty}}}\, |   e^{-2\pi i \delta_{\infty}}\, | ||||||
|   \cL(\vb{n}_{\vb{\infty}}), |   \cL(\vec{n}_{\infty}), | ||||||
| \end{equation} | \end{equation} | ||||||
| where $\cL(\vb{n}_{\vb{\infty}}) \in \SU{2}$. | where $\cL(\vec{n}_{\infty}) \in \SU{2}$. | ||||||
| The previous equation implies | The previous equation implies | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \qty( D\, \rM_{\vb{\infty}}\, D^{-1} )^\dagger |   \qty( D\, \rM_{\infty}\, D^{-1} )^\dagger | ||||||
|   = |   = | ||||||
|   \qty( D\, \rM_{\vb{\infty}}\, D^{-1} )^{-1}, |   \qty( D\, \rM_{\infty}\, D^{-1} )^{-1}, | ||||||
| \end{equation} | \end{equation} | ||||||
| which can be rewritten as | which can be rewritten as | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \widetilde{\rM}_{\vb{\infty}}^{-1}~ |   \widetilde{\rM}_{\infty}^{-1}~ | ||||||
|   \cC^{\dagger}\, D^{\dagger}\, D\, \cC |   \cC^{\dagger}\, D^{\dagger}\, D\, \cC | ||||||
|   = |   = | ||||||
|   \cC^{\dagger}\, D^{\dagger}\, D\, \cC~ |   \cC^{\dagger}\, D^{\dagger}\, D\, \cC~ | ||||||
|   \widetilde{\rM}_{\vb{\infty}}^{-1}. |   \widetilde{\rM}_{\infty}^{-1}. | ||||||
| \end{equation} | \end{equation} | ||||||
| As $\widetilde{\rM}_{\vb{\infty}}$ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements of $\cC^{\dagger}\, D^{\dagger}\, D\, \cC$ must vanish. | As $\widetilde{\rM}_{\infty}$ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements of $\cC^{\dagger}\, D^{\dagger}\, D\, \cC$ must vanish. | ||||||
| We therefore have | We therefore have | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \begin{split} |   \begin{split} | ||||||
| @@ -76,71 +76,71 @@ This would then imply | |||||||
| We can finally show in details the computation of the parameters of the basis of hypergeometric functions used in the main text. | We can finally show in details the computation of the parameters of the basis of hypergeometric functions used in the main text. | ||||||
| The relation between these and the \SU{2} matrices can be computed requiring that the monodromies induced by the choice of the parameters equal the monodromies produced by the rotations of the D-branes. | The relation between these and the \SU{2} matrices can be computed requiring that the monodromies induced by the choice of the parameters equal the monodromies produced by the rotations of the D-branes. | ||||||
|  |  | ||||||
| The monodromy in $\omega_{\bart-1} = 0$ is simpler to compute given that we choose $\cL(\vb{n}_{\vb{0}})$ and $\cR(\widetilde{\vb{m}}_{\vb{0}})$ to be diagonal. | The monodromy in $\omega_{\bart-1} = 0$ is simpler to compute given that we choose $\cL(\vec{n}_{0})$ and $\cR(\widetilde{\vec{m}}_{0})$ to be diagonal. | ||||||
| We impose: | We impose: | ||||||
| \begin{eqnarray} | \begin{eqnarray} | ||||||
|   \mqty( \dmat{1, e^{-2\pi i c^{(L)}}} ) |   \mqty( \dmat{1, e^{-2\pi i c^{(L)}}} ) | ||||||
|   & = & |   & = & | ||||||
|   e^{-2\pi i \delta_{\vb{0}}^{(L)}}\, |   e^{-2\pi i \delta_{0}^{(L)}}\, | ||||||
|   \mqty( \dmat{e^{2\pi i n_{\vb{0}}}, e^{-2\pi i n_{\vb{0}}}} ), |   \mqty( \dmat{e^{2\pi i n_{0}}, e^{-2\pi i n_{0}}} ), | ||||||
|   \\ |   \\ | ||||||
|   \mqty( \dmat{1, e^{-2\pi i c^{(R)}}} ) |   \mqty( \dmat{1, e^{-2\pi i c^{(R)}}} ) | ||||||
|   & = & |   & = & | ||||||
|   e^{-2\pi i \delta_{\vb{0}}^{(R)}}\, |   e^{-2\pi i \delta_{0}^{(R)}}\, | ||||||
|   \mqty( \dmat{e^{-2\pi i m_{\vb{0}}}, e^{2\pi i m_{\vb{0}}}} ), |   \mqty( \dmat{e^{-2\pi i m_{0}}, e^{2\pi i m_{0}}} ), | ||||||
| \end{eqnarray} | \end{eqnarray} | ||||||
| where $n^3_{\vb{0}} = \norm{\vb{n}_{\vb{0}}} = n_{\vb{0}}$ and $m^3_{\vb{0}} = \norm{\vb{m}_{\vb{0}}} = m_{\vb{0}}$ with $0 \le  n_{\vb{0}},\, m_{\vb{0}} < 1$ due to the conventions \eqref{eq:maximal_torus_left} and \eqref{eq:maximal_torus_right}. | where $n^3_{0} = \norm{\vec{n}_{0}} = n_{0}$ and $m^3_{0} = \norm{\vec{m}_{0}} = m_{0}$ with $0 \le  n_{0},\, m_{0} < 1$ due to the conventions \eqref{eq:maximal_torus_left} and \eqref{eq:maximal_torus_right}. | ||||||
| We thus have: | We thus have: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \begin{split} |   \begin{split} | ||||||
|     \delta_{\vb{0}}^{(L)} |     \delta_{0}^{(L)} | ||||||
|     & = |     & = | ||||||
|     n_{\vb{0}} + k_{\delta^{(L)}_{\vb{0}}}, |     n_{0} + k_{\delta^{(L)}_{0}}, | ||||||
|     \qquad |     \qquad | ||||||
|     k_{\delta^{(L)}_{\vb{0}}} \in \Z, |     k_{\delta^{(L)}_{0}} \in \Z, | ||||||
|     \\ |     \\ | ||||||
|     c^{(L)} |     c^{(L)} | ||||||
|     & = |     & = | ||||||
|     2 n_{\vb{0}} + k_c, |     2 n_{0} + k_c, | ||||||
|     \qquad |     \qquad | ||||||
|     k_c \in \Z. |     k_c \in \Z. | ||||||
|   \end{split} |   \end{split} | ||||||
|   \label{eq:cL} |   \label{eq:cL} | ||||||
| \end{equation} | \end{equation} | ||||||
| Since the determinant of the right hand side is $e^{-4 \pi i \delta_{\vb{0}}^{(L)}}$, the range of definition of $\delta_{\vb{0}}^{(L)}$ is $\alpha \le \delta_{\vb{0}}^{(L)} \le  \alpha + \frac{1}{2}$. | Since the determinant of the right hand side is $e^{-4 \pi i \delta_{0}^{(L)}}$, the range of definition of $\delta_{0}^{(L)}$ is $\alpha \le \delta_{0}^{(L)} \le  \alpha + \frac{1}{2}$. | ||||||
| Given that $0 \le n_{\vb{0}} < \frac{1}{2}$ we simply take $\alpha = 0$ and set $\delta_{\vb{0}}^{(L)} = n_{\vb{0}}$. | Given that $0 \le n_{0} < \frac{1}{2}$ we simply take $\alpha = 0$ and set $\delta_{0}^{(L)} = n_{0}$. | ||||||
| Analogous results hold in the right sector. | Analogous results hold in the right sector. | ||||||
| Furthermore from the third equation in \eqref{eq:parameters_equality_zero} and from the first equation in \eqref{eq:cL} we can restrict: | Furthermore from the third equation in \eqref{eq:parameters_equality_zero} and from the first equation in \eqref{eq:cL} we can restrict: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   n_{\vb{0}} + m_{\vb{0}} - A \in \Z. |   n_{0} + m_{0} - A \in \Z. | ||||||
| \end{equation} | \end{equation} | ||||||
|  |  | ||||||
| We then need to find $3$ equations to determine $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$. | We then need to find $3$ equations to determine $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\infty}$. | ||||||
| After that we then fix the remaining factors in $B$ and $\abs{K^{(L)}}$. | After that we then fix the remaining factors in $B$ and $\abs{K^{(L)}}$. | ||||||
| The equations follow from~\eqref{eq:parameters_equality_infty}. | The equations follow from~\eqref{eq:parameters_equality_infty}. | ||||||
| The first two equations for $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$ follow by considering the trace of~\eqref{eq:parameters_equality_infty}: | The first two equations for $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\infty}$ follow by considering the trace of~\eqref{eq:parameters_equality_infty}: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   e^{\pi i ( a^{(L)} + b^{(L)} )} \cos(\pi( a^{(L)} - b^{(L)} ) ) |   e^{\pi i ( a^{(L)} + b^{(L)} )} \cos(\pi( a^{(L)} - b^{(L)} ) ) | ||||||
|   = |   = | ||||||
|   e^{-2\pi i \delta^{(L)}_{\infty}} \cos(2\pi n_{\vb{\infty}}), |   e^{-2\pi i \delta^{(L)}_{\infty}} \cos(2\pi n_{\infty}), | ||||||
| \end{equation} | \end{equation} | ||||||
| which is satisfied by: | which is satisfied by: | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \begin{split} |   \begin{split} | ||||||
|     \delta^{(L)}_{\vb{\infty}} |     \delta^{(L)}_{\infty} | ||||||
|     & = |     & = | ||||||
|     - |     - | ||||||
|     \frac{1}{2}(a^{(L)} + b^{(L)}) |     \frac{1}{2}(a^{(L)} + b^{(L)}) | ||||||
|     + |     + | ||||||
|     \frac{1}{2} k_{\delta^{(L)}_{\vb{\infty}}}, |     \frac{1}{2} k_{\delta^{(L)}_{\infty}}, | ||||||
|     \qquad |     \qquad | ||||||
|     k_{\delta_{\vb{\infty}}} \in \Z, |     k_{\delta_{\infty}} \in \Z, | ||||||
|     \\ |     \\ | ||||||
|     a^{(L)} - b^{(L)} |     a^{(L)} - b^{(L)} | ||||||
|     & = |     & = | ||||||
|     2\, (-1)^{p^{(L)}}\, n_{\vb{\infty}} |     2\, (-1)^{p^{(L)}}\, n_{\infty} | ||||||
|     + |     + | ||||||
|     (-1)^{q^{(L)}}\, k_{\delta^{(L)}_{\vb{\infty}}} |     (-1)^{q^{(L)}}\, k_{\delta^{(L)}_{\infty}} | ||||||
|     + |     + | ||||||
|     2\, k'_{a b}, |     2\, k'_{a b}, | ||||||
|     \qquad |     \qquad | ||||||
| @@ -154,31 +154,31 @@ We therefore have: | |||||||
| \begin{equation} | \begin{equation} | ||||||
|   a^{(L)} - b^{(L)} |   a^{(L)} - b^{(L)} | ||||||
|   = |   = | ||||||
|   2\, n_{\vb{\infty}} |   2\, n_{\infty} | ||||||
|   + |   + | ||||||
|   k_{\delta^{(L)}_{\vb{\infty}}} |   k_{\delta^{(L)}_{\infty}} | ||||||
|   + |   + | ||||||
|   2 k_{ab}, |   2 k_{ab}, | ||||||
|   \qquad |   \qquad | ||||||
|   k_{a b}\in \Z. |   k_{a b}\in \Z. | ||||||
|   \label{eq:aL-bL} |   \label{eq:aL-bL} | ||||||
| \end{equation} | \end{equation} | ||||||
| The allowed values for $k_{\delta^{(L)}_{\vb{\infty}}}$ follow a construction similar to the monodromy around $\omega_{\bart-1} = 0$. | The allowed values for $k_{\delta^{(L)}_{\infty}}$ follow a construction similar to the monodromy around $\omega_{\bart-1} = 0$. | ||||||
| The main difference is given by the fact that $\frac{1}{2}(a^{(L)} + b^{(L)})$  may a priori take values in an interval of width $1$. | The main difference is given by the fact that $\frac{1}{2}(a^{(L)} + b^{(L)})$  may a priori take values in an interval of width $1$. | ||||||
| As in the previous case we have $\alpha \le \delta_{\vb{\infty}}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary. | As in the previous case we have $\alpha \le \delta_{\infty}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary. | ||||||
| We cannot thus choose a vanishing $k_{\delta^{(L)}_{\vb{\infty}}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$. | We cannot thus choose a vanishing $k_{\delta^{(L)}_{\infty}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$. | ||||||
|  |  | ||||||
| We find a third relation by considering the entry | We find a third relation by considering the entry | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \Im\qty( |   \Im\qty( | ||||||
|     e^{+2\pi i \delta_{\vb{\infty}}^{(L)}}\, |     e^{+2\pi i \delta_{\infty}^{(L)}}\, | ||||||
|     D^{(L)}\, |     D^{(L)}\, | ||||||
|     \rM_{\vb{\infty}}^{(L)}\, |     \rM_{\infty}^{(L)}\, | ||||||
|     \qty( D^{(L)} )^{-1} |     \qty( D^{(L)} )^{-1} | ||||||
|   )_{11} |   )_{11} | ||||||
|   = |   = | ||||||
|   \Im\qty( |   \Im\qty( | ||||||
|     \cL(n_{\vb{\infty}}) |     \cL(n_{\infty}) | ||||||
|   )_{11}. |   )_{11}. | ||||||
| \end{equation} | \end{equation} | ||||||
| Using | Using | ||||||
| @@ -191,31 +191,31 @@ and the second equation in~\eqref{eq:cL} and~\eqref{eq:aL-bL} leads to: | |||||||
| \begin{equation} | \begin{equation} | ||||||
|   \cos(\pi( a^{(L)} + b^{(L)} - c^{(L)} )) |   \cos(\pi( a^{(L)} + b^{(L)} - c^{(L)} )) | ||||||
|   = |   = | ||||||
|   (-1)^{k_c+k_{\delta^{(L)}_{\vb{\infty}}} }\, \cos(2\pi \cA^{(L)}), |   (-1)^{k_c+k_{\delta^{(L)}_{\infty}} }\, \cos(2\pi \cA^{(L)}), | ||||||
| \end{equation} | \end{equation} | ||||||
| where | where | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \cos(2\pi \cA^{(L)}) |   \cos(2\pi \cA^{(L)}) | ||||||
|   = |   = | ||||||
|   \cos(2\pi n_{\vb{0}})\, |   \cos(2\pi n_{0})\, | ||||||
|   \cos(2\pi n_{\vb{\infty}}) |   \cos(2\pi n_{\infty}) | ||||||
|   - |   - | ||||||
|   \sin(2\pi n_{\vb{0}})\, |   \sin(2\pi n_{0})\, | ||||||
|   \sin(2\pi n_{\vb{\infty}})\, |   \sin(2\pi n_{\infty})\, | ||||||
|   \frac{n_{\vb{\infty}}^3}{n_{\vb{\infty}}}. |   \frac{n_{\infty}^3}{n_{\infty}}. | ||||||
| \label{eq:cos_n1} | \label{eq:cos_n1} | ||||||
| \end{equation} | \end{equation} | ||||||
| This expression is connected with rotation parameter in the third interaction point $\omega_{\bart+1} = 1$. | This expression is connected with rotation parameter in the third interaction point $\omega_{\bart+1} = 1$. | ||||||
| In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{\vb{1}})$. | In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{1})$. | ||||||
| We then write | We then write | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   a^{(L)} + b^{(L)} - c^{(L)} |   a^{(L)} + b^{(L)} - c^{(L)} | ||||||
|   = |   = | ||||||
|   2\, (-1)^{f^{(L)}}\, n_{\vb{1}} |   2\, (-1)^{f^{(L)}}\, n_{1} | ||||||
|   + |   + | ||||||
|   k_c |   k_c | ||||||
|   + |   + | ||||||
|   k_{\delta^{(L)}_{\vb{\infty}}} |   k_{\delta^{(L)}_{\infty}} | ||||||
|   + |   + | ||||||
|   2\, k_{abc}, |   2\, k_{abc}, | ||||||
|   \qquad |   \qquad | ||||||
| @@ -228,13 +228,13 @@ The request | |||||||
|   + |   + | ||||||
|   B |   B | ||||||
|   - |   - | ||||||
|   n_{\vb{0}} |   n_{0} | ||||||
|   - |   - | ||||||
|   m_{\vb{0}} |   m_{0} | ||||||
|   - |   - | ||||||
|   (-1)^{f^{(L)}}\, n_{\vb{1}} |   (-1)^{f^{(L)}}\, n_{1} | ||||||
|   - |   - | ||||||
|   (-1)^{f^{(R)}}\, m_{\vb{1}} |   (-1)^{f^{(R)}}\, m_{1} | ||||||
|   \in \Z |   \in \Z | ||||||
| \end{equation} | \end{equation} | ||||||
| finally fixes the $B$ parameter in the third equation of~\eqref{eq:parameters_equality_infty}. | finally fixes the $B$ parameter in the third equation of~\eqref{eq:parameters_equality_infty}. | ||||||
| @@ -243,51 +243,51 @@ So far we can summarise the results in | |||||||
| \begin{eqnarray} | \begin{eqnarray} | ||||||
|   a |   a | ||||||
|   = |   = | ||||||
|   n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} + n_{\vb{\infty}} + m_a, |   n_{0} + (-1)^{f^{(L)}} n_{1} + n_{\infty} + m_a, | ||||||
|   & \qquad & |   & \qquad & | ||||||
|   m_a \in \Z, |   m_a \in \Z, | ||||||
|   \\ |   \\ | ||||||
|   b |   b | ||||||
|   = |   = | ||||||
|   n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} - n_{\vb{\infty}} + m_b, |   n_{0} + (-1)^{f^{(L)}} n_{1} - n_{\infty} + m_b, | ||||||
|   & \qquad & |   & \qquad & | ||||||
|   m_b \in \Z, |   m_b \in \Z, | ||||||
|   \\ |   \\ | ||||||
|   c |   c | ||||||
|   = |   = | ||||||
|   2\, n_{\vb{0}} + m_c, |   2\, n_{0} + m_c, | ||||||
|   & \qquad & |   & \qquad & | ||||||
|   m_c \in \Z, |   m_c \in \Z, | ||||||
|   \\ |   \\ | ||||||
|   \delta_{\vb{0}}^{(L)} |   \delta_{0}^{(L)} | ||||||
|   = |   = | ||||||
|   n_{\vb{0}}, |   n_{0}, | ||||||
|   \\ |   \\ | ||||||
|   \delta_{\vb{\infty}}^{(L)} |   \delta_{\infty}^{(L)} | ||||||
|   = |   = | ||||||
|   - n_{\vb{0}} - (-1)^{f^{(L)}} n_{\vb{1}} + m_c + 2\, m_\delta, |   - n_{0} - (-1)^{f^{(L)}} n_{1} + m_c + 2\, m_\delta, | ||||||
|   & \qquad & |   & \qquad & | ||||||
|   m_{\delta} \in \Z, |   m_{\delta} \in \Z, | ||||||
|   \\ |   \\ | ||||||
|   A |   A | ||||||
|   = |   = | ||||||
|   n_{\vb{0}} + m_{\vb{0}} + m_A, |   n_{0} + m_{0} + m_A, | ||||||
|   & \qquad & |   & \qquad & | ||||||
|   m_A \in \Z, |   m_A \in \Z, | ||||||
|   \\ |   \\ | ||||||
|   B |   B | ||||||
|   = |   = | ||||||
|   (-1)^{f^{(L)}}\, n_{\vb{1}} + (-1)^{f^{(R)}}\, m_{\vb{1}} + m_B, |   (-1)^{f^{(L)}}\, n_{1} + (-1)^{f^{(R)}}\, m_{1} + m_B, | ||||||
|   & \qquad & |   & \qquad & | ||||||
|   m_B \in \Z. |   m_B \in \Z. | ||||||
| \end{eqnarray} | \end{eqnarray} | ||||||
|  |  | ||||||
| $K^{(L)}$ is finally determined from | $K^{(L)}$ is finally determined from | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \qty( D^{(L)}\, \rM_{\vb{\infty}}\, \qty( D^{(L)} )^{-1} )_{21} |   \qty( D^{(L)}\, \rM_{\infty}\, \qty( D^{(L)} )^{-1} )_{21} | ||||||
|   = |   = | ||||||
|   e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\, |   e^{-2\pi i \delta_{\infty}^{(L)}}\, | ||||||
|   \qty( \cL(n_{\vb{\infty}}) )_{21}, |   \qty( \cL(n_{\infty}) )_{21}, | ||||||
|   \label{eq:fixing_K_21} |   \label{eq:fixing_K_21} | ||||||
| \end{equation} | \end{equation} | ||||||
| and get: | and get: | ||||||
| @@ -296,9 +296,9 @@ and get: | |||||||
|   = |   = | ||||||
|   -\frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\, |   -\frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\, | ||||||
|   \cG( a^{(L)},\, b^{(L)},\, c^{(L)} )\, |   \cG( a^{(L)},\, b^{(L)},\, c^{(L)} )\, | ||||||
|   \sin(2 \pi n_{\vb{0}}) |   \sin(2 \pi n_{0}) | ||||||
|   \sin(2 \pi n_{\vb{\infty}}) |   \sin(2 \pi n_{\infty}) | ||||||
|   \frac{n^1_{\vb{\infty}} + i\, n^2_{\vb{\infty}}}{n_{\vb{\infty}}}, |   \frac{n^1_{\infty} + i\, n^2_{\infty}}{n_{\infty}}, | ||||||
|   \label{eq:app_B_K21} |   \label{eq:app_B_K21} | ||||||
| \end{equation} | \end{equation} | ||||||
| where $\cG( a,\, b,\, c ) = \gfun{1-a}\, \gfun{1-b}\, \gfun{a+1-c}\, \gfun{b+1-c}$. | where $\cG( a,\, b,\, c ) = \gfun{1-a}\, \gfun{1-b}\, \gfun{a+1-c}\, \gfun{b+1-c}$. | ||||||
| @@ -316,16 +316,16 @@ The result is | |||||||
|     \cG(1 - a^{(L)},\, 1 - b^{(L)},\, 2 - c^{(L)})\, |     \cG(1 - a^{(L)},\, 1 - b^{(L)},\, 2 - c^{(L)})\, | ||||||
|     \\ |     \\ | ||||||
|     & \times |     & \times | ||||||
|     \sin(2 \pi n_{\vb{0}})\, |     \sin(2 \pi n_{0})\, | ||||||
|     \sin(2 \pi n_{\vb{\infty}})\, |     \sin(2 \pi n_{\infty})\, | ||||||
|     \frac{n^1_{\vb{\infty}} -i n^2_{\vb{\infty}}}{n_{\vb{\infty}}}, |     \frac{n^1_{\infty} -i n^2_{\infty}}{n_{\infty}}, | ||||||
|   \end{split} |   \end{split} | ||||||
|   \label{eq:app_B_K12} |   \label{eq:app_B_K12} | ||||||
| \end{equation} | \end{equation} | ||||||
| where the function $\cG( a,\, b,\, c )$ was defined at the end of the previous section. | where the function $\cG( a,\, b,\, c )$ was defined at the end of the previous section. | ||||||
| Compatibility with~\eqref{eq:app_B_K21} requires | Compatibility with~\eqref{eq:app_B_K21} requires | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \frac{(n^1_{\vb{\infty}})^2 + (n^2_{\vb{\infty}})^2}{n^2_{\vb{\infty}}} |   \frac{(n^1_{\infty})^2 + (n^2_{\infty})^2}{n^2_{\infty}} | ||||||
|   = |   = | ||||||
|   -4 \frac{\sin(\pi a) \sin(\pi(c-a))\sin(\pi b) \sin(\pi(c-b))} |   -4 \frac{\sin(\pi a) \sin(\pi(c-a))\sin(\pi b) \sin(\pi(c-b))} | ||||||
|           {\sin^2(\pi c) \sin^2(\pi(a-b))}. |           {\sin^2(\pi c) \sin^2(\pi(a-b))}. | ||||||
| @@ -333,7 +333,7 @@ Compatibility with~\eqref{eq:app_B_K21} requires | |||||||
| \end{equation} | \end{equation} | ||||||
| We can then rewrite~\eqref{eq:cos_n1} as | We can then rewrite~\eqref{eq:cos_n1} as | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \frac{(n^3_{\vb{\infty}})^2}{n^2_{\vb{\infty}}} |   \frac{(n^3_{\infty})^2}{n^2_{\infty}} | ||||||
|   = |   = | ||||||
|   \frac{(\cos(\pi (a-b)) \cos(\pi c)- \cos(\pi(a+b-c)))^2} |   \frac{(\cos(\pi (a-b)) \cos(\pi c)- \cos(\pi(a+b-c)))^2} | ||||||
|        {\sin^2(\pi c) \sin^2(\pi(a-b))}. |        {\sin^2(\pi c) \sin^2(\pi(a-b))}. | ||||||
| @@ -341,10 +341,10 @@ We can then rewrite~\eqref{eq:cos_n1} as | |||||||
| It is then possible to verify that the sum of the left and right hand sides of~\eqref{eq:n12+n22} and the last equation are equal to $1$. | It is then possible to verify that the sum of the left and right hand sides of~\eqref{eq:n12+n22} and the last equation are equal to $1$. | ||||||
| The same consistency check can also be performed by computing $K^{(L)}$ from | The same consistency check can also be performed by computing $K^{(L)}$ from | ||||||
| \begin{equation} | \begin{equation} | ||||||
|   \qty( D^{(L)}\, \rM_{\vb{\infty}}\, \qty( D^{(L)} )^{-1} )_{12} |   \qty( D^{(L)}\, \rM_{\infty}\, \qty( D^{(L)} )^{-1} )_{12} | ||||||
|   = |   = | ||||||
|   e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\, |   e^{-2\pi i \delta_{\infty}^{(L)}}\, | ||||||
|   \qty( \cL(n_{\vb{\infty}}) )_{12}, |   \qty( \cL(n_{\infty}) )_{12}, | ||||||
| \end{equation} | \end{equation} | ||||||
| instead of \eqref{eq:fixing_K_21}. | instead of \eqref{eq:fixing_K_21}. | ||||||
|  |  | ||||||
|   | |||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1308,12 +1308,12 @@ These stacks would separately lead to a $\U{3} \times \U{2}$ gauge theory. | |||||||
| It would however be theory of pure force, without matter content. | It would however be theory of pure force, without matter content. | ||||||
| Moreover we should also worry about the extra \U{1} groups appearing: these need careful consideration but go beyond the necessary analysis for what follows. | Moreover we should also worry about the extra \U{1} groups appearing: these need careful consideration but go beyond the necessary analysis for what follows. | ||||||
|  |  | ||||||
| Matter fields are notoriously fermions transforming in the bi-fundamental representation $(\vb{N}, \vb{M})$ of the \sm gauge group~\eqref{eq:intro:smgroup}. | Matter fields are notoriously fermions transforming in the bi-fundamental representation $(\vec{N}, \vec{M})$ of the \sm gauge group~\eqref{eq:intro:smgroup}. | ||||||
| For example left handed quarks in the \sm transform under the $(\vb{3}, \vb{2})$ representation of the group $\SU{3}_C \otimes \SU{2}_L$. | For example left handed quarks in the \sm transform under the $(\vec{3}, \vec{2})$ representation of the group $\SU{3}_C \otimes \SU{2}_L$. | ||||||
| This is realised in string theory by a string stretched across two stacks of $3$ and $2$ D-branes as in the right of~\Cref{fig:dbranes:chanpaton}. | This is realised in string theory by a string stretched across two stacks of $3$ and $2$ D-branes as in the right of~\Cref{fig:dbranes:chanpaton}. | ||||||
| The fermion would then be characterised by the charge under the gauge bosons living on the D-branes. | The fermion would then be characterised by the charge under the gauge bosons living on the D-branes. | ||||||
| The corresponding anti-particle would then simply be a string oriented in the opposite direction. | The corresponding anti-particle would then simply be a string oriented in the opposite direction. | ||||||
| Things get complicated when introducing also left handed leptons transforming in the $(\vb{1}, \vb{2})$ representation: they cannot have endpoints on the same stack of D-branes as quarks since they do not have colour charge. | Things get complicated when introducing also left handed leptons transforming in the $(\vec{1}, \vec{2})$ representation: they cannot have endpoints on the same stack of D-branes as quarks since they do not have colour charge. | ||||||
| We therefore need to introduce more D-branes to account for all the possible combinations. | We therefore need to introduce more D-branes to account for all the possible combinations. | ||||||
|  |  | ||||||
| An additional issue comes from the requirement of chirality. | An additional issue comes from the requirement of chirality. | ||||||
| @@ -1338,7 +1338,7 @@ The light spectrum is thus composed of the desired matter content alongside with | |||||||
| \end{figure} | \end{figure} | ||||||
|  |  | ||||||
| It is therefore possible to recover a \sm-like construction using multiple D-branes at angles as in~\Cref{fig:dbranes:smbranes}, where the angles have been drawn perpendicular but can in principle be arbitrary~\cite{Ibanez:2001:GettingJustStandard,Grimm:2005:EffectiveActionType,Sheikh-Jabbari:1998:ClassificationDifferentBranes,Berkooz:1996:BranesIntersectingAngles}. | It is therefore possible to recover a \sm-like construction using multiple D-branes at angles as in~\Cref{fig:dbranes:smbranes}, where the angles have been drawn perpendicular but can in principle be arbitrary~\cite{Ibanez:2001:GettingJustStandard,Grimm:2005:EffectiveActionType,Sheikh-Jabbari:1998:ClassificationDifferentBranes,Berkooz:1996:BranesIntersectingAngles}. | ||||||
| For instance quarks are localised at the intersection of the \emph{baryonic} stack of D-branes, yielding the colour symmetry generators, with the \emph{left} and \emph{right} stacks, leading to the $( \vb{3}, \vb{2} )$ and $( \vb{3}, \vb{1})$ representations. | For instance quarks are localised at the intersection of the \emph{baryonic} stack of D-branes, yielding the colour symmetry generators, with the \emph{left} and \emph{right} stacks, leading to the $( \vec{3}, \vec{2} )$ and $( \vec{3}, \vec{1})$ representations. | ||||||
| The same applies to leptons created by strings attached to the \emph{leptonic} stack. | The same applies to leptons created by strings attached to the \emph{leptonic} stack. | ||||||
| Combinations of the additional \U{1} factors in the resulting gauge group finally lead to the definition of the hypercharge $Y$. | Combinations of the additional \U{1} factors in the resulting gauge group finally lead to the definition of the hypercharge $Y$. | ||||||
|  |  | ||||||
|   | |||||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
		Reference in New Issue
	
	Block a user