Some additions on cosmology
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -3,53 +3,53 @@ In this appendix we explain the conventions used for \SU{2} and show the details | ||||
|  | ||||
| \subsection{Conventions} | ||||
|  | ||||
| We parameterise \SU{2} matrices $U$ with a vector $\vb{n} \in \R^3$ such that: | ||||
| We parameterise \SU{2} matrices $U$ with a vector $\vec{n} \in \R^3$ such that: | ||||
| \begin{equation} | ||||
|   U(\vb{n}) | ||||
|   U(\vec{n}) | ||||
|   = | ||||
|   \cos(2 \pi n)\, \1_2 | ||||
|   + | ||||
|   i\, \frac{\vb{n} \cdot \vb{\sigma}}{n}\, \sin(2 \pi n), | ||||
|   i\, \frac{\vec{n} \cdot \vec{\sigma}}{n}\, \sin(2 \pi n), | ||||
|   \label{eq:su2parametrisation} | ||||
| \end{equation} | ||||
| where $n = \norm{\vb{n}}$ and $0 \le n \le \frac{1}{2}$. | ||||
| We also identify all $\vb{n}$ when $n=\frac{1}{2}$ since in this case $U(\vb{n})= -\1_2$. | ||||
| where $n = \norm{\vec{n}}$ and $0 \le n \le \frac{1}{2}$. | ||||
| We also identify all $\vec{n}$ when $n=\frac{1}{2}$ since in this case $U(\vec{n})= -\1_2$. | ||||
| The parametrisation is such that: | ||||
| \begin{eqnarray} | ||||
|   U^*(\vb{n}) | ||||
|   U^*(\vec{n}) | ||||
|   & = & | ||||
|   \sigma^2\, U(\vb{n})\, \sigma^2 | ||||
|   \sigma^2\, U(\vec{n})\, \sigma^2 | ||||
|   = | ||||
|   U(\widetilde{\vb{n}}), | ||||
|   U(\widetilde{\vec{n}}), | ||||
|   \\ | ||||
|   U^{\dagger}(\vb{n}) | ||||
|   U^{\dagger}(\vec{n}) | ||||
|   & = & | ||||
|   U^T(\widetilde{\vb{n}}) | ||||
|   U^T(\widetilde{\vec{n}}) | ||||
|   = | ||||
|   U(-\vb{n}), | ||||
|   U(-\vec{n}), | ||||
|   \\ | ||||
|   -U(\vb{n}) | ||||
|   -U(\vec{n}) | ||||
|   & = & | ||||
|   U(\widehat{\vb{n}}) | ||||
|   U(\widehat{\vec{n}}) | ||||
|   \label{eq:U_props} | ||||
| \end{eqnarray} | ||||
| where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vb{n}} = \qty( -n^1, n^2, -n^3 )$ and $\widehat{\vb{n}} = - \qty(\frac{1}{2} -n )\, \frac{\vb{n}}{n}$. | ||||
| where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vec{n}} = \qty( -n^1, n^2, -n^3 )$ and $\widehat{\vec{n}} = - \qty(\frac{1}{2} -n )\, \frac{\vec{n}}{n}$. | ||||
|  | ||||
| The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\,  U(\vb{m})$ has an explicit realisation as: | ||||
| The group product of two elements $U(\vec{n} \circ \vec{m} ) = U(\vec{n})\,  U(\vec{m})$ has an explicit realisation as: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \cos(2 \pi \norm{\vb{n} \circ \vb{m}}) | ||||
|     \cos(2 \pi \norm{\vec{n} \circ \vec{m}}) | ||||
|     & = | ||||
|     \cos(2 \pi n)\, \cos(2 \pi m) | ||||
|     - | ||||
|     \sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{n} \cdot \vb{m}}{n\, m}, | ||||
|     \sin(2 \pi n)\, \sin(2\pi m)\, \frac{\vec{n} \cdot \vec{m}}{n\, m}, | ||||
|     \\ | ||||
|     \sin(2 \pi \norm{\vb{n} \circ \vb{m}})\, | ||||
|     \frac{\vb{n} \circ \vb{m}}{\norm{\vb{n} \circ \vb{m}}} | ||||
|     \sin(2 \pi \norm{\vec{n} \circ \vec{m}})\, | ||||
|     \frac{\vec{n} \circ \vec{m}}{\norm{\vec{n} \circ \vec{m}}} | ||||
|     & = | ||||
|     \cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vb{m}}{m} | ||||
|     \cos(2 \pi n)\, \sin(2\pi m)\, \frac{\vec{m}}{m} | ||||
|     + | ||||
|     \sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vb{n}}{n}. | ||||
|     \sin(2 \pi n)\, \cos(2\pi m)\, \frac{\vec{n}}{n}. | ||||
|   \end{split} | ||||
|   \label{eq:product_in_SU2} | ||||
| \end{equation} | ||||
| @@ -58,9 +58,9 @@ The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\,  U(\vb{ | ||||
|  | ||||
| Let $I = 1,\, 2,\, 3,\, 4$ and define: | ||||
| \begin{equation} | ||||
|   \tau_I = \qty( i\, \1_2,\, \vb{\sigma} ), | ||||
|   \tau_I = \qty( i\, \1_2,\, \vec{\sigma} ), | ||||
| \end{equation} | ||||
| where $\vb{\sigma} = \qty( \sigma^1,\, \sigma^2,\, \sigma^3 )$ are the Pauli matrices. | ||||
| where $\vec{\sigma} = \qty( \sigma^1,\, \sigma^2,\, \sigma^3 )$ are the Pauli matrices. | ||||
| It is possible to show that: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
| @@ -122,7 +122,7 @@ If the vector $X^I$ is real, using~\eqref{eq:tau_props} we have: | ||||
|  | ||||
| A rotation in spinor representation is defined as: | ||||
| \begin{equation} | ||||
|   X'_{(s)} = U_{L}(\vb{n})\, X_{(s)}\, U_{R}^{\dagger}(\vb{m}) | ||||
|   X'_{(s)} = U_{L}(\vec{n})\, X_{(s)}\, U_{R}^{\dagger}(\vec{m}) | ||||
| \end{equation} | ||||
| and it is equivalent to: | ||||
| \begin{equation} | ||||
| @@ -138,9 +138,9 @@ through | ||||
|   \frac{1}{2} | ||||
|   \tr( | ||||
|     \qty( \tau_I )^{\dagger}\, | ||||
|     U_{L}(\vb{n})\, | ||||
|     U_{L}(\vec{n})\, | ||||
|     \tau_J\, | ||||
|     U_{R}^{\dagger}(\vb{m}) | ||||
|     U_{R}^{\dagger}(\vec{m}) | ||||
|   ). | ||||
| \end{equation} | ||||
| The matrix $R$ is the $4$-dimensional rotation matrix we are looking for since: | ||||
|   | ||||
		Reference in New Issue
	
	Block a user