Up to NS fermions
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		| @@ -33,7 +33,7 @@ The parametrisation is such that: | ||||
|   U(\widehat{\vb{n}}) | ||||
|   \label{eq:U_props} | ||||
| \end{eqnarray} | ||||
| where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vb{n}} = \left( -n^1, n^2, -n^3 \right)$ and $\widehat{\vb{n}} = - \left(\frac{1}{2} -n \right)\, \frac{\vb{n}}{n}$. | ||||
| where $\sigma^2$ is the second Pauli matrix, $\widetilde{\vb{n}} = \qty( -n^1, n^2, -n^3 )$ and $\widehat{\vb{n}} = - \qty(\frac{1}{2} -n )\, \frac{\vb{n}}{n}$. | ||||
|  | ||||
| The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\,  U(\vb{m})$ has an explicit realisation as: | ||||
| \begin{equation} | ||||
| @@ -58,17 +58,17 @@ The group product of two elements $U(\vb{n} \circ \vb{m} ) = U(\vb{n})\,  U(\vb{ | ||||
|  | ||||
| Let $I = 1,\, 2,\, 3,\, 4$ and define: | ||||
| \begin{equation} | ||||
|   \tau_I = \left( i\, \1_2,\, \vb{\sigma} \right), | ||||
|   \tau_I = \qty( i\, \1_2,\, \vb{\sigma} ), | ||||
| \end{equation} | ||||
| where $\vb{\sigma} = \left( \sigma^1,\, \sigma^2,\, \sigma^3 \right)$ are the Pauli matrices. | ||||
| where $\vb{\sigma} = \qty( \sigma^1,\, \sigma^2,\, \sigma^3 )$ are the Pauli matrices. | ||||
| It is possible to show that: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \left( \tau_I \right)^{\dagger} | ||||
|     \qty( \tau_I )^{\dagger} | ||||
|     & = | ||||
|     \eta_{IJ}\, {\tau}^I, | ||||
|     \\ | ||||
|     \left( \tau^I \right)^* | ||||
|     \qty( \tau^I )^* | ||||
|     & = | ||||
|     -\sigma_2\, \tau_I\, \sigma_2, | ||||
|   \end{split} | ||||
| @@ -85,7 +85,7 @@ The following relations are then a natural consequence: | ||||
|   & = & | ||||
|   2\, \eta_{IJ}, | ||||
|   \\ | ||||
|   \tr(\tau_I \left( \tau_J \right)^{\dagger}) | ||||
|   \tr(\tau_I \qty( \tau_J )^{\dagger}) | ||||
|   & = & | ||||
|   2\, \delta_{IJ}. | ||||
| \end{eqnarray} | ||||
| @@ -99,7 +99,7 @@ We can recover the components using the previous properties: | ||||
|   X^I | ||||
|   = | ||||
|   \frac{1}{2}\, \delta^{IJ}\, | ||||
|   \tr(X_{(s)} \left( \tau_J \right)^{\dagger}) | ||||
|   \tr(X_{(s)} \qty( \tau_J )^{\dagger}) | ||||
|   = | ||||
|   \frac{1}{2}\, \eta^{IJ}\, \tr(X_{(s)} \tau_J), | ||||
| \end{equation} | ||||
| @@ -126,7 +126,7 @@ A rotation in spinor representation is defined as: | ||||
| \end{equation} | ||||
| and it is equivalent to: | ||||
| \begin{equation} | ||||
|   \left( X' \right)^I | ||||
|   \qty( X' )^I | ||||
|   = | ||||
|   \tensor{R}{^I_J}\, | ||||
|   X^J | ||||
| @@ -137,7 +137,7 @@ through | ||||
|   = | ||||
|   \frac{1}{2} | ||||
|   \tr( | ||||
|     \left( \tau_I \right)^{\dagger}\, | ||||
|     \qty( \tau_I )^{\dagger}\, | ||||
|     U_{L}(\vb{n})\, | ||||
|     \tau_J\, | ||||
|     U_{R}^{\dagger}(\vb{m}) | ||||
| @@ -167,7 +167,7 @@ From the second equation in \eqref{eq:tau_props} and the first equation in \eqre | ||||
| \end{equation} | ||||
| Furthermore the direct computation of the determinant of $R$ using the parametrisation~\eqref{eq:su2parametrisation} shows that $\det R = 1$. | ||||
| Finally the explicit choice of the basis $\tau$ ensures $R$ to be a real matrix which ensures $R \in \SO{4}$. | ||||
| Since $\left\lbrace U_{L},\, U_{R} \right\rbrace$ and $\left\lbrace -U_{L},\, -U_{R} \right\rbrace$ generate the same \SO{4} matrix then the correct isomorphism takes the form: | ||||
| Since $\qty{ U_{L},\, U_{R} }$ and $\qty{ -U_{L},\, -U_{R} }$ generate the same \SO{4} matrix then the correct isomorphism takes the form: | ||||
| \begin{equation} | ||||
|   \SO{4} | ||||
|   \cong | ||||
|   | ||||
		Reference in New Issue
	
	Block a user