Add appendix for branes at angles
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										351
									
								
								sec/app/parameters.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										351
									
								
								sec/app/parameters.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,351 @@ | ||||
| In this appendix we show the computation of the parameters of the hypergeometric functions and their relation with the rotation parameters. | ||||
|  | ||||
|  | ||||
| \subsection{Consistency Conditions of the Monodromy Matrices} | ||||
|  | ||||
| In the main text we set | ||||
| \begin{equation} | ||||
|   D~ | ||||
|   \rM_{\vb{\infty}}~ | ||||
|   D^{-1} | ||||
|   = | ||||
|   e^{-2\pi i \delta_{\vb{\infty}}}\, | ||||
|   \cL(\vb{n}_{\vb{\infty}}), | ||||
| \end{equation} | ||||
| where $\cL(\vb{n}_{\vb{\infty}}) \in \SU{2}$. | ||||
| The previous equation implies | ||||
| \begin{equation} | ||||
|   \left( D\, \rM_{\vb{\infty}}\, D^{-1} \right)^\dagger | ||||
|   = | ||||
|   \left( D\, \rM_{\vb{\infty}}\, D^{-1} \right)^{-1}, | ||||
| \end{equation} | ||||
| which can be rewritten as | ||||
| \begin{equation} | ||||
|   \widetilde{\rM}_{\vb{\infty}}^{-1}~ | ||||
|   \cC^{\dagger}\, D^{\dagger}\, D\, \cC | ||||
|   = | ||||
|   \cC^{\dagger}\, D^{\dagger}\, D\, \cC~ | ||||
|   \widetilde{\rM}_{\vb{\infty}}^{-1}. | ||||
| \end{equation} | ||||
| As $\widetilde{\rM}_{\vb{\infty}}$ is a generic diagonal matrix, the previous equation implies that the off-diagonal elements of $\cC^{\dagger}\, D^{\dagger}\, D\, \cC$ must vanish. | ||||
| We therefore have | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \abs{K}^{-2} | ||||
|     & = | ||||
|     -\frac{\cC_{21}\, \cC^*_{22}}{\cC_{11}\, \cC^*_{12}} | ||||
|     \\ | ||||
|     & = | ||||
|     -\frac{1}{\pi^4}\, | ||||
|     \abs{\gfun{a} \gfun{b} \gfun{c-a} \gfun{c-b}}^2 \times | ||||
|     \\ | ||||
|     & \times | ||||
|     \sin(\pi a)\, \sin^*(\pi (c-a))\, (\sin(\pi b)\, \sin^*(\pi (c-b)))^*. | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| When $a,\, b,\, c \in \R$ this ultimately means that | ||||
| \begin{equation} | ||||
|   \sin(\pi a)\, \sin(\pi (c-a))\, \sin(\pi b)\, \sin(\pi (c-b)) < 0. | ||||
|   \label{eq:constraint_from_K^2} | ||||
| \end{equation} | ||||
| Since the previous equation is invariant under integer shift of any of its parameters, we can consider just the fractional parts $0 \le \{a\},\, \{b\},\, \{c\} < 1$. | ||||
| In order to have \U{2} monodromies finally requires | ||||
| \begin{equation} | ||||
|   0 \le \{b\} < \{c\} < \{a\} < 1 | ||||
|   \qq{or} | ||||
|   0 \le \{a\} < \{c\} < \{b\} <1. | ||||
|   \label{eq:K_consistency_condition} | ||||
| \end{equation} | ||||
|  | ||||
| Should we request \U{1,1} monodromies as in moving rotated branes then we get: | ||||
| \begin{equation} | ||||
|   \abs{K}^{-2} | ||||
|   = | ||||
|   \frac{\cC_{21}\, \cC^*_{22}}{\cC_{11}\, \cC^*_{12}}. | ||||
| \end{equation} | ||||
| This would then imply | ||||
| \begin{equation} | ||||
|   0 \le \{c\} < \{a\},\, \{b\} < 1 | ||||
|   \qq{or} | ||||
|   0 \le \{a\},\, \{b\} < \{c\} < 1. | ||||
| \end{equation} | ||||
|  | ||||
|  | ||||
| \subsection{Fixing the Parameters} | ||||
|  | ||||
| We can finally show in details the computation of the parameters of the basis of hypergeometric functions used in the main text. | ||||
| The relation between these and the \SU{2} matrices can be computed requiring that the monodromies induced by the choice of the parameters equal the monodromies produced by the rotations of the D-branes. | ||||
|  | ||||
| The monodromy in $\omega_{\bt-1} = 0$ is simpler to compute given that we choose $\cL(\vb{n}_{\vb{0}})$ and $\cR(\widetilde{\vb{m}}_{\vb{0}})$ to be diagonal. | ||||
| We impose: | ||||
| \begin{eqnarray} | ||||
|   \mqty( \dmat{1, e^{-2\pi i c^{(L)}}} ) | ||||
|   & = & | ||||
|   e^{-2\pi i \delta_{\vb{0}}^{(L)}}\, | ||||
|   \mqty( \dmat{e^{2\pi i n_{\vb{0}}}, e^{-2\pi i n_{\vb{0}}}} ), | ||||
|   \\ | ||||
|   \mqty( \dmat{1, e^{-2\pi i c^{(R)}}} ) | ||||
|   & = & | ||||
|   e^{-2\pi i \delta_{\vb{0}}^{(R)}}\, | ||||
|   \mqty( \dmat{e^{-2\pi i m_{\vb{0}}}, e^{2\pi i m_{\vb{0}}}} ), | ||||
| \end{eqnarray} | ||||
| where $n^3_{\vb{0}} = \norm{\vb{n}_{\vb{0}}} = n_{\vb{0}}$ and $m^3_{\vb{0}} = \norm{\vb{m}_{\vb{0}}} = m_{\vb{0}}$ with $0 \le  n_{\vb{0}},\, m_{\vb{0}} < 1$ due to the conventions \eqref{eq:maximal_torus_left} and \eqref{eq:maximal_torus_right}. | ||||
| We thus have: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \delta_{\vb{0}}^{(L)} | ||||
|     & = | ||||
|     n_{\vb{0}} + k_{\delta^{(L)}_{\vb{0}}}, | ||||
|     \qquad | ||||
|     k_{\delta^{(L)}_{\vb{0}}} \in \Z, | ||||
|     \\ | ||||
|     c^{(L)} | ||||
|     & = | ||||
|     2 n_{\vb{0}} + k_c, | ||||
|     \qquad | ||||
|     k_c \in \Z. | ||||
|   \end{split} | ||||
|   \label{eq:cL} | ||||
| \end{equation} | ||||
| Since the determinant of the right hand side is $e^{-4 \pi i \delta_{\vb{0}}^{(L)}}$, the range of definition of $\delta_{\vb{0}}^{(L)}$ is $\alpha \le \delta_{\vb{0}}^{(L)} \le  \alpha + \frac{1}{2}$. | ||||
| Given that $0 \le n_{\vb{0}} < \frac{1}{2}$ we simply take $\alpha = 0$ and set $\delta_{\vb{0}}^{(L)} = n_{\vb{0}}$. | ||||
| Analogous results hold in the right sector. | ||||
| Furthermore from the third equation in \eqref{eq:parameters_equality_zero} and from the first equation in \eqref{eq:cL} we can restrict: | ||||
| \begin{equation} | ||||
|   n_{\vb{0}} + m_{\vb{0}} - A \in \Z. | ||||
| \end{equation} | ||||
|  | ||||
| We then need to find $3$ equations to determine $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$. | ||||
| After that we then fix the remaining factors in $B$ and $\abs{K^{(L)}}$. | ||||
| The equations follow from~\eqref{eq:parameters_equality_infty}. | ||||
| The first two equations for $a^{(L)}$, $b^{(L)}$ and $\delta^{(L)}_{\vb{\infty}}$ follow by considering the trace of~\eqref{eq:parameters_equality_infty}: | ||||
| \begin{equation} | ||||
|   e^{\pi i ( a^{(L)} + b^{(L)} )} \cos(\pi( a^{(L)} - b^{(L)} ) ) | ||||
|   = | ||||
|   e^{-2\pi i \delta^{(L)}_{\infty}} \cos(2\pi n_{\vb{\infty}}), | ||||
| \end{equation} | ||||
| which is satisfied by: | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \delta^{(L)}_{\vb{\infty}} | ||||
|     & = | ||||
|     - | ||||
|     \frac{1}{2}(a^{(L)} + b^{(L)}) | ||||
|     + | ||||
|     \frac{1}{2} k_{\delta^{(L)}_{\vb{\infty}}}, | ||||
|     \qquad | ||||
|     k_{\delta_{\vb{\infty}}} \in \Z, | ||||
|     \\ | ||||
|     a^{(L)} - b^{(L)} | ||||
|     & = | ||||
|     2\, (-1)^{p^{(L)}}\, n_{\vb{\infty}} | ||||
|     + | ||||
|     (-1)^{q^{(L)}}\, k_{\delta^{(L)}_{\vb{\infty}}} | ||||
|     + | ||||
|     2\, k'_{a b}, | ||||
|     \qquad | ||||
|     k'_{ab} \in \Z, | ||||
|   \end{split} | ||||
| \end{equation} | ||||
| where $p^{(L)},\, q^{(L)} \in \left\lbrace 0, 1 \right\rbrace$. | ||||
| Notice that changing the value of $p^{(L)}$ corresponds to swapping $a$ and $b$: since the hypergeometric function is symmetric in those parameters we can fix $p^{(L)}=0$. | ||||
| Redefining $k'$ we can always set $q^{(L)}=0$. | ||||
| We therefore have: | ||||
| \begin{equation} | ||||
|   a^{(L)} - b^{(L)} | ||||
|   = | ||||
|   2\, n_{\vb{\infty}} | ||||
|   + | ||||
|   k_{\delta^{(L)}_{\vb{\infty}}} | ||||
|   + | ||||
|   2 k_{ab}, | ||||
|   \qquad | ||||
|   k_{a b}\in \Z. | ||||
|   \label{eq:aL-bL} | ||||
| \end{equation} | ||||
| The allowed values for $k_{\delta^{(L)}_{\vb{\infty}}}$ follow a construction similar to the monodromy around $\omega_{\bt-1} = 0$. | ||||
| The main difference is given by the fact that $\frac{1}{2}(a^{(L)} + b^{(L)})$  may a priori take values in an interval of width $1$. | ||||
| As in the previous case we have $\alpha \le \delta_{\vb{\infty}}^{(L)} \le \alpha + \frac{1}{2}$ with $\alpha$ technically arbitrary. | ||||
| We cannot thus choose a vanishing $k_{\delta^{(L)}_{\vb{\infty}}}$ but we have to consider $k_{\delta^{(L)}_{\infty}} = 0,\, 1$. | ||||
|  | ||||
| We find a third relation by considering the entry | ||||
| \begin{equation} | ||||
|   \Im\left( | ||||
|     e^{+2\pi i \delta_{\vb{\infty}}^{(L)}}\, | ||||
|     D^{(L)}\, | ||||
|     \rM_{\vb{\infty}}^{(L)}\, | ||||
|     \left( D^{(L)} \right)^{-1} | ||||
|   \right)_{11} | ||||
|   = | ||||
|   \Im\left( | ||||
|     \cL(n_{\vb{\infty}}) | ||||
|   \right)_{11}. | ||||
| \end{equation} | ||||
| Using | ||||
| \begin{equation} | ||||
|   \det \cC | ||||
|   = | ||||
|   \frac{\sin(\pi c^{(L)})}{\sin(\pi(a^{(L)}-b^{(L)}))}, | ||||
| \end{equation} | ||||
| and the second equation in~\eqref{eq:cL} and~\eqref{eq:aL-bL} leads to: | ||||
| \begin{equation} | ||||
|   \cos(\pi( a^{(L)} + b^{(L)} - c^{(L)} )) | ||||
|   = | ||||
|   (-1)^{k_c+k_{\delta^{(L)}_{\vb{\infty}}} }\, \cos(2\pi \cA^{(L)}), | ||||
| \end{equation} | ||||
| where | ||||
| \begin{equation} | ||||
|   \cos(2\pi \cA^{(L)}) | ||||
|   = | ||||
|   \cos(2\pi n_{\vb{0}})\, | ||||
|   \cos(2\pi n_{\vb{\infty}}) | ||||
|   - | ||||
|   \sin(2\pi n_{\vb{0}})\, | ||||
|   \sin(2\pi n_{\vb{\infty}})\, | ||||
|   \frac{n_{\vb{\infty}}^3}{n_{\vb{\infty}}}. | ||||
| \label{eq:cos_n1} | ||||
| \end{equation} | ||||
| This expression is connected with rotation parameter in the third interaction point $\omega_{\bt+1} = 1$. | ||||
| In fact $\cos(2\pi \cA^{(L)}) = \cos(2\pi {n}_{\vb{1}})$. | ||||
| We then write | ||||
| \begin{equation} | ||||
|   a^{(L)} + b^{(L)} - c^{(L)} | ||||
|   = | ||||
|   2\, (-1)^{f^{(L)}}\, n_{\vb{1}} | ||||
|   + | ||||
|   k_c | ||||
|   + | ||||
|   k_{\delta^{(L)}_{\vb{\infty}}} | ||||
|   + | ||||
|   2\, k_{abc}, | ||||
|   \qquad | ||||
|   k_{abc}\in \Z, | ||||
| \end{equation} | ||||
| with $f^{(L)} \in \left\lbrace 0, 1 \right\rbrace$. | ||||
| The request | ||||
| \begin{equation} | ||||
|   A | ||||
|   + | ||||
|   B | ||||
|   - | ||||
|   n_{\vb{0}} | ||||
|   - | ||||
|   m_{\vb{0}} | ||||
|   - | ||||
|   (-1)^{f^{(L)}}\, n_{\vb{1}} | ||||
|   - | ||||
|   (-1)^{f^{(R)}}\, m_{\vb{1}} | ||||
|   \in \Z | ||||
| \end{equation} | ||||
| finally fixes the $B$ parameter in the third equation of~\eqref{eq:parameters_equality_infty}. | ||||
|  | ||||
| So far we can summarise the results in | ||||
| \begin{eqnarray} | ||||
|   a | ||||
|   = | ||||
|   n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} + n_{\vb{\infty}} + m_a, | ||||
|   & \qquad & | ||||
|   m_a \in \Z, | ||||
|   \\ | ||||
|   b | ||||
|   = | ||||
|   n_{\vb{0}} + (-1)^{f^{(L)}} n_{\vb{1}} - n_{\vb{\infty}} + m_b, | ||||
|   & \qquad & | ||||
|   m_b \in \Z, | ||||
|   \\ | ||||
|   c | ||||
|   = | ||||
|   2\, n_{\vb{0}} + m_c, | ||||
|   & \qquad & | ||||
|   m_c \in \Z, | ||||
|   \\ | ||||
|   \delta_{\vb{0}}^{(L)} | ||||
|   = | ||||
|   n_{\vb{0}}, | ||||
|   \\ | ||||
|   \delta_{\vb{\infty}}^{(L)} | ||||
|   = | ||||
|   - n_{\vb{0}} - (-1)^{f^{(L)}} n_{\vb{1}} + m_c + 2\, m_\delta, | ||||
|   & \qquad & | ||||
|   m_{\delta} \in \Z, | ||||
|   \\ | ||||
|   A | ||||
|   = | ||||
|   n_{\vb{0}} + m_{\vb{0}} + m_A, | ||||
|   & \qquad & | ||||
|   m_A \in \Z, | ||||
|   \\ | ||||
|   B | ||||
|   = | ||||
|   (-1)^{f^{(L)}}\, n_{\vb{1}} + (-1)^{f^{(R)}}\, m_{\vb{1}} + m_B, | ||||
|   & \qquad & | ||||
|   m_B \in \Z. | ||||
| \end{eqnarray} | ||||
|  | ||||
| $K^{(L)}$ is finally determined from | ||||
| \begin{equation} | ||||
|   \left( D^{(L)}\, \rM_{\vb{\infty}}\, \left( D^{(L)} \right)^{-1} \right)_{21} | ||||
|   = | ||||
|   e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\, | ||||
|   \left( \cL(n_{\vb{\infty}}) \right)_{21}, | ||||
|   \label{eq:fixing_K_21} | ||||
| \end{equation} | ||||
| and get: | ||||
| \begin{equation} | ||||
|   K^{(L)} | ||||
|   = | ||||
|   -\frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\, | ||||
|   \cG( a^{(L)},\, b^{(L)},\, c^{(L)} )\, | ||||
|   \sin(2 \pi n_{\vb{0}}) | ||||
|   \sin(2 \pi n_{\vb{\infty}}) | ||||
|   \frac{n^1_{\vb{\infty}} + i\, n^2_{\vb{\infty}}}{n_{\vb{\infty}}}, | ||||
|   \label{eq:app_B_K21} | ||||
| \end{equation} | ||||
| where $\cG( a,\, b,\, c ) = \gfun{1-a}\, \gfun{1-b}\, \gfun{a+1-c}\, \gfun{b+1-c}$. | ||||
|  | ||||
|  | ||||
| \subsection{Checking the Consistency of the Solution} | ||||
|  | ||||
| We check the consistency condition \eqref{eq:K_consistency_condition} using~\eqref{eq:product_in_SU2}. | ||||
| The result is | ||||
| \begin{equation} | ||||
|   \begin{split} | ||||
|     \left( K^{(L)} \right)^{-1} | ||||
|     & = | ||||
|     \frac{(-1)^{m_a + m_b + m_c}}{2 \pi^2}\, | ||||
|     \cG(1 - a^{(L)},\, 1 - b^{(L)},\, 2 - c^{(L)})\, | ||||
|     \\ | ||||
|     & \times | ||||
|     \sin(2 \pi n_{\vb{0}})\, | ||||
|     \sin(2 \pi n_{\vb{\infty}})\, | ||||
|     \frac{n^1_{\vb{\infty}} -i n^2_{\vb{\infty}}}{n_{\vb{\infty}}}, | ||||
|   \end{split} | ||||
|   \label{eq:app_B_K12} | ||||
| \end{equation} | ||||
| where the function $\cG( a,\, b,\, c )$ was defined at the end of the previous section. | ||||
| Compatibility with~\eqref{eq:app_B_K21} requires | ||||
| \begin{equation} | ||||
|   \frac{(n^1_{\vb{\infty}})^2 + (n^2_{\vb{\infty}})^2}{n^2_{\vb{\infty}}} | ||||
|   = | ||||
|   -4 \frac{\sin(\pi a) \sin(\pi(c-a))\sin(\pi b) \sin(\pi(c-b))} | ||||
|           {\sin^2(\pi c) \sin^2(\pi(a-b))}. | ||||
|   \label{eq:n12+n22} | ||||
| \end{equation} | ||||
| We can then rewrite~\eqref{eq:cos_n1} as | ||||
| \begin{equation} | ||||
|   \frac{(n^3_{\vb{\infty}})^2}{n^2_{\vb{\infty}}} | ||||
|   = | ||||
|   \frac{(\cos(\pi (a-b)) \cos(\pi c)- \cos(\pi(a+b-c)))^2} | ||||
|        {\sin^2(\pi c) \sin^2(\pi(a-b))}. | ||||
| \end{equation} | ||||
| It is then possible to verify that the sum of the left and right hand sides of~\eqref{eq:n12+n22} and the last equation are equal to $1$. | ||||
| The same consistency check can also be performed by computing $K^{(L)}$ from | ||||
| \begin{equation} | ||||
|   \left( D^{(L)}\, \rM_{\vb{\infty}}\, \left( D^{(L)} \right)^{-1} \right)_{12} | ||||
|   = | ||||
|   e^{-2\pi i \delta_{\vb{\infty}}^{(L)}}\, | ||||
|   \left( \cL(n_{\vb{\infty}}) \right)_{12}, | ||||
| \end{equation} | ||||
| instead of \eqref{eq:fixing_K_21}. | ||||
|  | ||||
| % vim: ft=tex | ||||
		Reference in New Issue
	
	Block a user