| @@ -12,7 +12,7 @@ In fact in~\cite{Liu:2002:StringsTimeDependentOrbifold} the four tachyons amplit | ||||
| \begin{equation} | ||||
|   A_4 \sim \int\limits_{q \sim \infty} \frac{\dd{q}}{\abs{q}} \ccA( q ) | ||||
| \end{equation} | ||||
| where $\ccA_{\text{closed}}( q ) \sim q^{4 - \ap \norm{\vec{p}_{\perp}}^2}$ and $\ccA_{\text{closed}}( q ) \sim q^{1 - \ap \norm{\vec{p}_{\perp}}^2} \tr\qty( \liebraket{T_1}{T_2}_+ \liebraket{T_3}{T_4}_+ )$ ($T_i$ for $i = 1,\, 2,\, 3,\, 4$ are Chan-Paton matrices). | ||||
| where $\ccA_{\text{closed}}( q ) \sim q^{4 - \ap \norm{\vec{p}_{\perp}}^2}$ and $\ccA_{\text{open}}( q ) \sim q^{1 - \ap \norm{\vec{p}_{\perp}}^2} \tr\qty( \liebraket{T_1}{T_2}_+ \liebraket{T_3}{T_4}_+ )$ ($T_i$ for $i = 1,\, 2,\, 3,\, 4$ are Chan-Paton matrices). | ||||
| Moreover divergences in string amplitudes are not limited to four points: interestingly we show that the open string three point amplitude with two tachyons and the first massive state may be divergent when some \emph{physical} polarisations are chosen. | ||||
| The true problem is therefore not related to a gravitational issue but to the non existence of the effective field theory. | ||||
| In fact when we express the theory using the eigenmodes of the kinetic terms some coefficients do not exist, not even as a distribution. | ||||
|   | ||||
		Reference in New Issue
	
	Block a user