@@ -12,7 +12,7 @@ In fact in~\cite{Liu:2002:StringsTimeDependentOrbifold} the four tachyons amplit
|
||||
\begin{equation}
|
||||
A_4 \sim \int\limits_{q \sim \infty} \frac{\dd{q}}{\abs{q}} \ccA( q )
|
||||
\end{equation}
|
||||
where $\ccA_{\text{closed}}( q ) \sim q^{4 - \ap \norm{\vec{p}_{\perp}}^2}$ and $\ccA_{\text{closed}}( q ) \sim q^{1 - \ap \norm{\vec{p}_{\perp}}^2} \tr\qty( \liebraket{T_1}{T_2}_+ \liebraket{T_3}{T_4}_+ )$ ($T_i$ for $i = 1,\, 2,\, 3,\, 4$ are Chan-Paton matrices).
|
||||
where $\ccA_{\text{closed}}( q ) \sim q^{4 - \ap \norm{\vec{p}_{\perp}}^2}$ and $\ccA_{\text{open}}( q ) \sim q^{1 - \ap \norm{\vec{p}_{\perp}}^2} \tr\qty( \liebraket{T_1}{T_2}_+ \liebraket{T_3}{T_4}_+ )$ ($T_i$ for $i = 1,\, 2,\, 3,\, 4$ are Chan-Paton matrices).
|
||||
Moreover divergences in string amplitudes are not limited to four points: interestingly we show that the open string three point amplitude with two tachyons and the first massive state may be divergent when some \emph{physical} polarisations are chosen.
|
||||
The true problem is therefore not related to a gravitational issue but to the non existence of the effective field theory.
|
||||
In fact when we express the theory using the eigenmodes of the kinetic terms some coefficients do not exist, not even as a distribution.
|
||||
|
||||
Reference in New Issue
Block a user