Adjustments to the bibliography

Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
2020-11-30 11:58:41 +01:00
parent be2ce0eac6
commit 0a701714e3
2 changed files with 38 additions and 82 deletions

View File

@@ -4,8 +4,7 @@
author = {Abadi, Martín and Agarwal, Ashish and Barham, Paul and Brevdo, Eugene and Chen, Zhifeng and Citro, Craig and Corrado, Greg S. and Davis, Andy and Dean, Jeffrey and Devin, Matthieu and Ghemawat, Sanjay and Goodfellow, Ian and Harp, Andrew and Irving, Geoffrey and Isard, Michael and Jia, Yangqing and Jozefowicz, Rafal and Kaiser, Lukasz and Kudlur, Manjunath and Levenberg, Josh and Mané, Dandelion and Monga, Rajat and Moore, Sherry and Murray, Derek and Olah, Chris and Schuster, Mike and Shlens, Jonathon and Steiner, Benoit and Sutskever, Ilya and Talwar, Kunal and Tucker, Paul and Vanhoucke, Vincent and Vasudevan, Vijay and Viégas, Fernanda and Vinyals, Oriol and Warden, Pete and Wattenberg, Martin and Wicke, Martin and Yu, Yuan and Zheng, Xiaoqiang}, author = {Abadi, Martín and Agarwal, Ashish and Barham, Paul and Brevdo, Eugene and Chen, Zhifeng and Citro, Craig and Corrado, Greg S. and Davis, Andy and Dean, Jeffrey and Devin, Matthieu and Ghemawat, Sanjay and Goodfellow, Ian and Harp, Andrew and Irving, Geoffrey and Isard, Michael and Jia, Yangqing and Jozefowicz, Rafal and Kaiser, Lukasz and Kudlur, Manjunath and Levenberg, Josh and Mané, Dandelion and Monga, Rajat and Moore, Sherry and Murray, Derek and Olah, Chris and Schuster, Mike and Shlens, Jonathon and Steiner, Benoit and Sutskever, Ilya and Talwar, Kunal and Tucker, Paul and Vanhoucke, Vincent and Vasudevan, Vijay and Viégas, Fernanda and Vinyals, Oriol and Warden, Pete and Wattenberg, Martin and Wicke, Martin and Yu, Yuan and Zheng, Xiaoqiang},
date = {2015}, date = {2015},
url = {https://www.tensorflow.org/}, url = {https://www.tensorflow.org/},
file = {/home/riccardo/.local/share/zotero/files/abadi_et_al_2015_tensorflow.pdf}, file = {/home/riccardo/.local/share/zotero/files/abadi_et_al_2015_tensorflow.pdf}
keywords = {⛔ No DOI found}
} }
@article{Abel:2003:FlavourChangingNeutral, @article{Abel:2003:FlavourChangingNeutral,
@@ -59,7 +58,6 @@
eprint = {hep-th/0612110}, eprint = {hep-th/0612110},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/abel_goodsell_2007_realistic_yukawa_couplings_through_instantons_in_intersecting_brane_worlds8.pdf}, file = {/home/riccardo/.local/share/zotero/files/abel_goodsell_2007_realistic_yukawa_couplings_through_instantons_in_intersecting_brane_worlds8.pdf},
keywords = {⚠️ Invalid DOI},
number = {10} number = {10}
} }
@@ -293,8 +291,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1808.04730}, eprint = {1808.04730},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/ardizzone_et_al_2019_analyzing_inverse_problems_with_invertible_neural_networks.pdf;/home/riccardo/.local/share/zotero/storage/NQJPI658/1808.html}, file = {/home/riccardo/.local/share/zotero/files/ardizzone_et_al_2019_analyzing_inverse_problems_with_invertible_neural_networks.pdf;/home/riccardo/.local/share/zotero/storage/NQJPI658/1808.html}
keywords = {⛔ No DOI found}
} }
@article{Arduino:2020:OriginDivergencesTimeDependent, @article{Arduino:2020:OriginDivergencesTimeDependent,
@@ -400,8 +397,7 @@
volume = {13}, volume = {13},
pages = {281--305}, pages = {281--305},
file = {/home/riccardo/.local/share/zotero/files/bergstra_bengio_2012_random_search_for_hyper-parameter_optimization.pdf}, file = {/home/riccardo/.local/share/zotero/files/bergstra_bengio_2012_random_search_for_hyper-parameter_optimization.pdf},
issue = {Feb}, issue = {Feb}
keywords = {⛔ No DOI found}
} }
@article{Berkooz:1996:BranesIntersectingAngles, @article{Berkooz:1996:BranesIntersectingAngles,
@@ -673,9 +669,8 @@
@online{Caffo::DataScienceSpecialization, @online{Caffo::DataScienceSpecialization,
title = {Data {{Science Specialization}}}, title = {Data {{Science Specialization}}},
author = {Caffo, Brian and Leek, Jeff and Peng, Roger D.}, author = {Caffo, Brian and Leek, Jeff and Peng, Roger D.},
journaltitle = {Coursera},
url = {https://www.coursera.org/specializations/jhu-data-science}, url = {https://www.coursera.org/specializations/jhu-data-science},
keywords = {⛔ No DOI found} organization = {{Coursera}}
} }
@inproceedings{Calabi:1957:KahlerManifoldsVanishing, @inproceedings{Calabi:1957:KahlerManifoldsVanishing,
@@ -729,8 +724,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1909.08699}, eprint = {1909.08699},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/caramello_jr_2019_introduction_to_orbifolds.pdf;/home/riccardo/.local/share/zotero/storage/N6FSCMLT/1909.html}, file = {/home/riccardo/.local/share/zotero/files/caramello_jr_2019_introduction_to_orbifolds.pdf;/home/riccardo/.local/share/zotero/storage/N6FSCMLT/1909.html}
keywords = {⛔ No DOI found}
} }
@article{Carifio:2017:MachineLearningString, @article{Carifio:2017:MachineLearningString,
@@ -769,8 +763,7 @@
author = {Caruana, Rich and Niculescu-Mizil, Alexandru}, author = {Caruana, Rich and Niculescu-Mizil, Alexandru},
date = {2006}, date = {2006},
pages = {161--168}, pages = {161--168},
file = {/home/riccardo/.local/share/zotero/files/caruana_niculescu-mizil_2006_an_empirical_comparison_of_supervised_learning_algorithms.pdf}, file = {/home/riccardo/.local/share/zotero/files/caruana_niculescu-mizil_2006_an_empirical_comparison_of_supervised_learning_algorithms.pdf}
keywords = {⛔ No DOI found}
} }
@article{Chamoun:2004:FermionMassesMixing, @article{Chamoun:2004:FermionMassesMixing,
@@ -866,8 +859,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {hep-ph/0703027}, eprint = {hep-ph/0703027},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/cleaver_2007_in_search_of_the_(minimal_supersymmetric)_standard_model_string.pdf}, file = {/home/riccardo/.local/share/zotero/files/cleaver_2007_in_search_of_the_(minimal_supersymmetric)_standard_model_string.pdf}
keywords = {⛔ No DOI found}
} }
@article{Cole:2019:SearchingLandscapeFlux, @article{Cole:2019:SearchingLandscapeFlux,
@@ -949,7 +941,6 @@
volume = {20}, volume = {20},
pages = {273--297}, pages = {273--297},
file = {/home/riccardo/.local/share/zotero/files/cortes_vapnik_1995_support-vector_networks.pdf}, file = {/home/riccardo/.local/share/zotero/files/cortes_vapnik_1995_support-vector_networks.pdf},
keywords = {❓ Multiple DOI},
number = {3} number = {3}
} }
@@ -1058,7 +1049,6 @@
eprint = {hep-th/0007235}, eprint = {hep-th/0007235},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/david_2000_tachyon_condensation_in_the_d0-d4_system.pdf}, file = {/home/riccardo/.local/share/zotero/files/david_2000_tachyon_condensation_in_the_d0-d4_system.pdf},
keywords = {⚠️ Invalid DOI},
number = {10} number = {10}
} }
@@ -1190,8 +1180,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {hep-th/9912275}, eprint = {hep-th/9912275},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/di_vecchia_liccardo_1999_d-branes_in_string_theory.pdf}, file = {/home/riccardo/.local/share/zotero/files/di_vecchia_liccardo_1999_d-branes_in_string_theory.pdf}
keywords = {⛔ No DOI found}
} }
@article{DiVecchia:2000:BranesStringTheory, @article{DiVecchia:2000:BranesStringTheory,
@@ -1219,8 +1208,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {hep-th/0601067}, eprint = {hep-th/0601067},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/di_vecchia_et_al_2006_boundary_state_for_magnetized_d9_branes_and_one-loop_calculation.pdf}, file = {/home/riccardo/.local/share/zotero/files/di_vecchia_et_al_2006_boundary_state_for_magnetized_d9_branes_and_one-loop_calculation.pdf}
keywords = {⛔ No DOI found}
} }
@article{DiVecchia:2007:WrappedMagnetizedBranes, @article{DiVecchia:2007:WrappedMagnetizedBranes,
@@ -1329,8 +1317,7 @@
author = {Drucker, Harris and Burges, Christopher JC and Kaufman, Linda and Smola, Alex J and Vapnik, Vladimir}, author = {Drucker, Harris and Burges, Christopher JC and Kaufman, Linda and Smola, Alex J and Vapnik, Vladimir},
date = {1997}, date = {1997},
pages = {155--161}, pages = {155--161},
file = {/home/riccardo/.local/share/zotero/files/drucker_et_al_1996_support_vector_regression_machines.pdf}, file = {/home/riccardo/.local/share/zotero/files/drucker_et_al_1996_support_vector_regression_machines.pdf}
keywords = {⛔ No DOI found}
} }
@article{Duo:2007:NewTwistField, @article{Duo:2007:NewTwistField,
@@ -1359,8 +1346,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {2007.13379}, eprint = {2007.13379},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/erbin_finotello_2020_inception_neural_network_for_complete_intersection_calabi-yau_3-folds.pdf}, file = {/home/riccardo/.local/share/zotero/files/erbin_finotello_2020_inception_neural_network_for_complete_intersection_calabi-yau_3-folds.pdf}
keywords = {⛔ No DOI found}
} }
@online{Erbin:2020:MachineLearningComplete, @online{Erbin:2020:MachineLearningComplete,
@@ -1372,8 +1358,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {2007.15706}, eprint = {2007.15706},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/erbin_finotello_2020_machine_learning_for_complete_intersection_calabi-yau_manifolds.pdf}, file = {/home/riccardo/.local/share/zotero/files/erbin_finotello_2020_machine_learning_for_complete_intersection_calabi-yau_manifolds.pdf}
keywords = {⛔ No DOI found}
} }
@article{Faraggi:2020:MachineLearningClassification, @article{Faraggi:2020:MachineLearningClassification,
@@ -1413,7 +1398,6 @@
url = {http://jmlr.org/papers/v15/delgado14a.html}, url = {http://jmlr.org/papers/v15/delgado14a.html},
abstract = {We evaluate 179 classifiers arising from 17 families (discriminant analysis, Bayesian, neural networks, support vector machines, decision trees, rule-based classifiers, boosting, bagging, stacking, random forests and other ensembles, generalized linear models, nearest-neighbors, partial least squares and principal component regression, logistic and multinomial regression, multiple adaptive regression splines and other methods), implemented in Weka, R (with and without the caret package), C and Matlab, including all the relevant classifiers available today. We use 121 data sets, which represent the whole UCI data base (excluding the large- scale problems) and other own real problems, in order to achieve significant conclusions about the classifier behavior, not dependent on the data set collection. The classifiers most likely to be the bests are the random forest (RF) versions, the best of which (implemented in R and accessed via caret) achieves 94.1\% of the maximum accuracy overcoming 90\% in the 84.3\% of the data sets. However, the difference is not statistically significant with the second best, the SVM with Gaussian kernel implemented in C using LibSVM, which achieves 92.3\% of the maximum accuracy. A few models are clearly better than the remaining ones: random forest, SVM with Gaussian and polynomial kernels, extreme learning machine with Gaussian kernel, C5.0 and avNNet (a committee of multi-layer perceptrons implemented in R with the caret package). The random forest is clearly the best family of classifiers (3 out of 5 bests classifiers are RF), followed by SVM (4 classifiers in the top-10), neural networks and boosting ensembles (5 and 3 members in the top-20, respectively).}, abstract = {We evaluate 179 classifiers arising from 17 families (discriminant analysis, Bayesian, neural networks, support vector machines, decision trees, rule-based classifiers, boosting, bagging, stacking, random forests and other ensembles, generalized linear models, nearest-neighbors, partial least squares and principal component regression, logistic and multinomial regression, multiple adaptive regression splines and other methods), implemented in Weka, R (with and without the caret package), C and Matlab, including all the relevant classifiers available today. We use 121 data sets, which represent the whole UCI data base (excluding the large- scale problems) and other own real problems, in order to achieve significant conclusions about the classifier behavior, not dependent on the data set collection. The classifiers most likely to be the bests are the random forest (RF) versions, the best of which (implemented in R and accessed via caret) achieves 94.1\% of the maximum accuracy overcoming 90\% in the 84.3\% of the data sets. However, the difference is not statistically significant with the second best, the SVM with Gaussian kernel implemented in C using LibSVM, which achieves 92.3\% of the maximum accuracy. A few models are clearly better than the remaining ones: random forest, SVM with Gaussian and polynomial kernels, extreme learning machine with Gaussian kernel, C5.0 and avNNet (a committee of multi-layer perceptrons implemented in R with the caret package). The random forest is clearly the best family of classifiers (3 out of 5 bests classifiers are RF), followed by SVM (4 classifiers in the top-10), neural networks and boosting ensembles (5 and 3 members in the top-20, respectively).},
file = {/home/riccardo/.local/share/zotero/files/fernández-delgado_et_al_2014_do_we_need_hundreds_of_classifiers_to_solve_real_world_classification_problems.pdf}, file = {/home/riccardo/.local/share/zotero/files/fernández-delgado_et_al_2014_do_we_need_hundreds_of_classifiers_to_solve_real_world_classification_problems.pdf},
keywords = {⛔ No DOI found},
number = {90} number = {90}
} }
@@ -1443,8 +1427,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1912.07617}, eprint = {1912.07617},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/finotello_pesando_2019_2d_fermion_on_the_strip_with_boundary_defects_as_a_cft_with_excited_spin_fields.pdf}, file = {/home/riccardo/.local/share/zotero/files/finotello_pesando_2019_2d_fermion_on_the_strip_with_boundary_defects_as_a_cft_with_excited_spin_fields.pdf}
keywords = {⛔ No DOI found}
} }
@article{Finotello:2019:ClassicalSolutionBosonic, @article{Finotello:2019:ClassicalSolutionBosonic,
@@ -1577,8 +1560,7 @@
author = {Glorot, Xavier and Bordes, Antoine and Bengio, Yoshua}, author = {Glorot, Xavier and Bordes, Antoine and Bengio, Yoshua},
date = {2011}, date = {2011},
pages = {315--323}, pages = {315--323},
file = {/home/riccardo/.local/share/zotero/files/glorot_et_al_2011_deep_sparse_rectifier_neural_networks.pdf}, file = {/home/riccardo/.local/share/zotero/files/glorot_et_al_2011_deep_sparse_rectifier_neural_networks.pdf}
keywords = {⛔ No DOI found}
} }
@article{Goddard:1973:QuantumDynamicsMassless, @article{Goddard:1973:QuantumDynamicsMassless,
@@ -1771,8 +1753,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {hep-th/9702155}, eprint = {hep-th/9702155},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/greene_1997_string_theory_on_calabi-yau_manifolds.pdf}, file = {/home/riccardo/.local/share/zotero/files/greene_1997_string_theory_on_calabi-yau_manifolds.pdf}
keywords = {⛔ No DOI found}
} }
@article{Halverson:2019:BranesBrainsExploring, @article{Halverson:2019:BranesBrainsExploring,
@@ -2027,8 +2008,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1502.03167}, eprint = {1502.03167},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/ioffe_szegedy_2015_batch_normalization.pdf;/home/riccardo/.local/share/zotero/storage/L94NDAT8/1502.html}, file = {/home/riccardo/.local/share/zotero/files/ioffe_szegedy_2015_batch_normalization.pdf;/home/riccardo/.local/share/zotero/storage/L94NDAT8/1502.html}
keywords = {⛔ No DOI found}
} }
@article{Jackiw:1992:ElectromagneticFieldsMassless, @article{Jackiw:1992:ElectromagneticFieldsMassless,
@@ -2066,8 +2046,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {math/0108088}, eprint = {math/0108088},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/joyce_2002_lectures_on_calabi-yau_and_special_lagrangian_geometry2.pdf}, file = {/home/riccardo/.local/share/zotero/files/joyce_2002_lectures_on_calabi-yau_and_special_lagrangian_geometry2.pdf}
keywords = {⛔ No DOI found}
} }
@article{Kachru:2003:SitterVacuaString, @article{Kachru:2003:SitterVacuaString,
@@ -2096,8 +2075,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1312.6114}, eprint = {1312.6114},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/kingma_welling_2014_auto-encoding_variational_bayes2.pdf;/home/riccardo/.local/share/zotero/storage/KYP8BISG/1312.html}, file = {/home/riccardo/.local/share/zotero/files/kingma_welling_2014_auto-encoding_variational_bayes2.pdf;/home/riccardo/.local/share/zotero/storage/KYP8BISG/1312.html}
keywords = {⛔ No DOI found}
} }
@online{Kingma:2017:AdamMethodStochastic, @online{Kingma:2017:AdamMethodStochastic,
@@ -2109,8 +2087,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1412.6980}, eprint = {1412.6980},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/kingma_ba_2017_adam3.pdf;/home/riccardo/.local/share/zotero/storage/9JQ8YQL7/1412.html}, file = {/home/riccardo/.local/share/zotero/files/kingma_ba_2017_adam3.pdf;/home/riccardo/.local/share/zotero/storage/9JQ8YQL7/1412.html}
keywords = {⛔ No DOI found}
} }
@online{Kingma:2017:AdamMethodStochastica, @online{Kingma:2017:AdamMethodStochastica,
@@ -2122,8 +2099,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1412.6980}, eprint = {1412.6980},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/kingma_ba_2017_adam.pdf;/home/riccardo/.local/share/zotero/files/kingma_ba_2017_adam2.pdf;/home/riccardo/.local/share/zotero/storage/EYEANITG/1412.html}, file = {/home/riccardo/.local/share/zotero/files/kingma_ba_2017_adam.pdf;/home/riccardo/.local/share/zotero/files/kingma_ba_2017_adam2.pdf;/home/riccardo/.local/share/zotero/storage/EYEANITG/1412.html}
keywords = {⛔ No DOI found}
} }
@article{Kiritsis:1994:StringPropagationGravitational, @article{Kiritsis:1994:StringPropagationGravitational,
@@ -2204,8 +2180,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {2003.13679}, eprint = {2003.13679},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/krippendorf_syvaeri_2020_detecting_symmetries_with_neural_networks2.pdf;/home/riccardo/.local/share/zotero/storage/F9KQKQ3Q/2003.html}, file = {/home/riccardo/.local/share/zotero/files/krippendorf_syvaeri_2020_detecting_symmetries_with_neural_networks2.pdf;/home/riccardo/.local/share/zotero/storage/F9KQKQ3Q/2003.html}
keywords = {⛔ No DOI found}
} }
@article{Liu:2002:StringsTimeDependentOrbifold, @article{Liu:2002:StringsTimeDependentOrbifold,
@@ -2242,7 +2217,6 @@
eprint = {hep-th/0206182}, eprint = {hep-th/0206182},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/liu_et_al_2002_strings_in_time_dependent_orbifolds.pdf}, file = {/home/riccardo/.local/share/zotero/files/liu_et_al_2002_strings_in_time_dependent_orbifolds.pdf},
keywords = {⚠️ Invalid DOI},
langid = {english}, langid = {english},
number = {10} number = {10}
} }
@@ -2309,7 +2283,6 @@
journaltitle = {The Journal of Machine Learning Research}, journaltitle = {The Journal of Machine Learning Research},
volume = {17}, volume = {17},
pages = {2853--2884}, pages = {2853--2884},
keywords = {⛔ No DOI found},
number = {1} number = {1}
} }
@@ -2334,8 +2307,7 @@
booktitle = {Proceedings of the {{IEEE}} Conference on Computer Vision and Pattern Recognition}, booktitle = {Proceedings of the {{IEEE}} Conference on Computer Vision and Pattern Recognition},
author = {Monti, Federico and Boscaini, Davide and Masci, Jonathan and Rodola, Emanuele and Svoboda, Jan and Bronstein, Michael M.}, author = {Monti, Federico and Boscaini, Davide and Masci, Jonathan and Rodola, Emanuele and Svoboda, Jan and Bronstein, Michael M.},
date = {2017}, date = {2017},
pages = {5115--5124}, pages = {5115--5124}
keywords = {⛔ No DOI found}
} }
@article{Mutter:2019:DeepLearningHeterotic, @article{Mutter:2019:DeepLearningHeterotic,
@@ -2364,8 +2336,7 @@
pages = {15862--15871}, pages = {15862--15871},
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1910.13593}, eprint = {1910.13593},
eprinttype = {arxiv}, eprinttype = {arxiv}
keywords = {⛔ No DOI found}
} }
@article{Nilsson:1990:GeneralNSRString, @article{Nilsson:1990:GeneralNSRString,
@@ -2454,7 +2425,6 @@
pages = {2825--2830}, pages = {2825--2830},
url = {http://jmlr.org/papers/v12/pedregosa11a.html}, url = {http://jmlr.org/papers/v12/pedregosa11a.html},
file = {/home/riccardo/.local/share/zotero/files/pedregosa_et_al_2011_scikit-learn2.pdf}, file = {/home/riccardo/.local/share/zotero/files/pedregosa_et_al_2011_scikit-learn2.pdf},
keywords = {⛔ No DOI found},
number = {85} number = {85}
} }
@@ -2464,8 +2434,7 @@
author = {Peng, Chao and Zhang, Xiangyu and Yu, Gang and Luo, Guiming and Sun, Jian}, author = {Peng, Chao and Zhang, Xiangyu and Yu, Gang and Luo, Guiming and Sun, Jian},
date = {2017}, date = {2017},
pages = {4353--4361}, pages = {4353--4361},
file = {/home/riccardo/.local/share/zotero/files/peng_et_al_2017_large_kernel_mattersimprove_semantic_segmentation_by_global_convolutional.pdf}, file = {/home/riccardo/.local/share/zotero/files/peng_et_al_2017_large_kernel_mattersimprove_semantic_segmentation_by_global_convolutional.pdf}
keywords = {⛔ No DOI found}
} }
@article{Pesando:2008:MultibranesBoundaryStates, @article{Pesando:2008:MultibranesBoundaryStates,
@@ -2511,8 +2480,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1107.5525}, eprint = {1107.5525},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/pesando_2011_the_generating_function_of_amplitudes_with_n_twisted_and_m_untwisted_states.pdf}, file = {/home/riccardo/.local/share/zotero/files/pesando_2011_the_generating_function_of_amplitudes_with_n_twisted_and_m_untwisted_states.pdf}
keywords = {⛔ No DOI found}
} }
@article{Pesando:2011:StringsArbitraryConstant, @article{Pesando:2011:StringsArbitraryConstant,
@@ -2659,8 +2627,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {hep-th/9611050}, eprint = {hep-th/9611050},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/polchinski_1996_tasi_lectures_on_d-branes.pdf}, file = {/home/riccardo/.local/share/zotero/files/polchinski_1996_tasi_lectures_on_d-branes.pdf}
keywords = {⛔ No DOI found}
} }
@book{Polchinski:1998:StringTheoryIntroduction, @book{Polchinski:1998:StringTheoryIntroduction,
@@ -2727,8 +2694,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1401.4082}, eprint = {1401.4082},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/rezende_et_al_2014_stochastic_backpropagation_and_approximate_inference_in_deep_generative_models2.pdf;/home/riccardo/.local/share/zotero/storage/HKC6H5VK/1401.html}, file = {/home/riccardo/.local/share/zotero/files/rezende_et_al_2014_stochastic_backpropagation_and_approximate_inference_in_deep_generative_models2.pdf;/home/riccardo/.local/share/zotero/storage/HKC6H5VK/1401.html}
keywords = {⛔ No DOI found}
} }
@article{Rudolph:1994:ConvergenceAnalysisCanonical, @article{Rudolph:1994:ConvergenceAnalysisCanonical,
@@ -2858,8 +2824,7 @@
booktitle = {Advances in Neural Information Processing Systems}, booktitle = {Advances in Neural Information Processing Systems},
author = {Snoek, Jasper and Larochelle, Hugo and Adams, Ryan P.}, author = {Snoek, Jasper and Larochelle, Hugo and Adams, Ryan P.},
date = {2012}, date = {2012},
pages = {2951--2959}, pages = {2951--2959}
keywords = {⛔ No DOI found}
} }
@article{Soldate:1987:PartialwaveUnitarityClosedstring, @article{Soldate:1987:PartialwaveUnitarityClosedstring,
@@ -2886,8 +2851,7 @@
volume = {15}, volume = {15},
pages = {1929--1958}, pages = {1929--1958},
url = {http://jmlr.org/papers/v15/srivastava14a.html}, url = {http://jmlr.org/papers/v15/srivastava14a.html},
file = {/home/riccardo/.local/share/zotero/files/srivastava_et_al_2014_dropout.pdf;/home/riccardo/.local/share/zotero/files/srivastava_et_al_2014_dropout2.pdf}, file = {/home/riccardo/.local/share/zotero/files/srivastava_et_al_2014_dropout.pdf;/home/riccardo/.local/share/zotero/files/srivastava_et_al_2014_dropout2.pdf}
keywords = {⛔ No DOI found}
} }
@article{Stieberger:1992:YukawaCouplingsBosonic, @article{Stieberger:1992:YukawaCouplingsBosonic,
@@ -2917,8 +2881,7 @@
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {hep-th/0302219}, eprint = {hep-th/0302219},
eprinttype = {arxiv}, eprinttype = {arxiv},
file = {/home/riccardo/.local/share/zotero/files/susskind_2003_the_anthropic_landscape_of_string_theory.pdf}, file = {/home/riccardo/.local/share/zotero/files/susskind_2003_the_anthropic_landscape_of_string_theory.pdf}
keywords = {⛔ No DOI found}
} }
@inproceedings{Szegedy:2015:GoingDeeperConvolutions, @inproceedings{Szegedy:2015:GoingDeeperConvolutions,
@@ -2930,8 +2893,7 @@
abstract = {We propose a deep convolutional neural network architecture codenamed "Inception", which was responsible for setting the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC 2014). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. This was achieved by a carefully crafted design that allows for increasing the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC 2014 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.}, abstract = {We propose a deep convolutional neural network architecture codenamed "Inception", which was responsible for setting the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC 2014). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. This was achieved by a carefully crafted design that allows for increasing the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC 2014 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.},
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1409.4842}, eprint = {1409.4842},
eprinttype = {arxiv}, eprinttype = {arxiv}
keywords = {⛔ No DOI found}
} }
@online{Szegedy:2016:Inceptionv4InceptionresnetImpact, @online{Szegedy:2016:Inceptionv4InceptionresnetImpact,
@@ -2940,8 +2902,7 @@
date = {2016}, date = {2016},
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1602.07261}, eprint = {1602.07261},
eprinttype = {arxiv}, eprinttype = {arxiv}
keywords = {⛔ No DOI found}
} }
@inproceedings{Szegedy:2016:RethinkingInceptionArchitecture, @inproceedings{Szegedy:2016:RethinkingInceptionArchitecture,
@@ -2952,8 +2913,7 @@
pages = {2818--2826}, pages = {2818--2826},
archivePrefix = {arXiv}, archivePrefix = {arXiv},
eprint = {1512.00567}, eprint = {1512.00567},
eprinttype = {arxiv}, eprinttype = {arxiv}
keywords = {⛔ No DOI found}
} }
@article{Taylor:2015:FtheoryGeometryMost, @article{Taylor:2015:FtheoryGeometryMost,
@@ -3025,8 +2985,7 @@
booktitle = {Advances in Neural Information Processing Systems}, booktitle = {Advances in Neural Information Processing Systems},
author = {Thrun, Sebastian}, author = {Thrun, Sebastian},
date = {1996}, date = {1996},
pages = {640--646}, pages = {640--646}
keywords = {⛔ No DOI found}
} }
@inproceedings{Tompson:2015:EfficientObjectLocalization, @inproceedings{Tompson:2015:EfficientObjectLocalization,
@@ -3064,8 +3023,7 @@
date = {2005}, date = {2005},
url = {http://cds.cern.ch/record/933469/files/cer-002601054.pdf}, url = {http://cds.cern.ch/record/933469/files/cer-002601054.pdf},
abstract = {We review the construction of chiral four-dimensional compactifications of string theory with different systems of D-branes, including type IIA intersecting D6-branes and type IIB magnetised D-branes. Such models lead to four-dimensional theories with non-abelian gauge interactions and charged chiral fermions. We discuss the application of these techniques to building of models with spectrum as close as possible to the Standard Model, and review their main phenomenological properties. We finally describe how to implement the tecniques to construct these models in flux compactifications, leading to models with realistic gauge sectors, moduli stabilization and supersymmetry breaking soft terms.}, abstract = {We review the construction of chiral four-dimensional compactifications of string theory with different systems of D-branes, including type IIA intersecting D6-branes and type IIB magnetised D-branes. Such models lead to four-dimensional theories with non-abelian gauge interactions and charged chiral fermions. We discuss the application of these techniques to building of models with spectrum as close as possible to the Standard Model, and review their main phenomenological properties. We finally describe how to implement the tecniques to construct these models in flux compactifications, leading to models with realistic gauge sectors, moduli stabilization and supersymmetry breaking soft terms.},
file = {/home/riccardo/.local/share/zotero/files/uranga_2005_tasi_lectures_on_string_compactification,_model_building,_and_fluxes.pdf}, file = {/home/riccardo/.local/share/zotero/files/uranga_2005_tasi_lectures_on_string_compactification,_model_building,_and_fluxes.pdf}
keywords = {⛔ No DOI found}
} }
@article{vanderWalt:2011:NumPyArrayStructure, @article{vanderWalt:2011:NumPyArrayStructure,
@@ -3112,8 +3070,7 @@
volume = {33}, volume = {33},
pages = {128--128}, pages = {128--128},
issn = {0026-1335}, issn = {0026-1335},
url = {http://eudml.org/doc/176041}, url = {http://eudml.org/doc/176041}
keywords = {⛔ No DOI found}
} }
@article{Yau:1977:CalabiConjectureNew, @article{Yau:1977:CalabiConjectureNew,
@@ -3146,8 +3103,7 @@
booktitle = {Proceedings of the {{IEEE}} International Conference on Computer Vision}, booktitle = {Proceedings of the {{IEEE}} International Conference on Computer Vision},
author = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A}, author = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
date = {2017}, date = {2017},
pages = {2223--2232}, pages = {2223--2232}
keywords = {⛔ No DOI found}
} }
@book{Zwiebach:2009:FirstCourseString, @book{Zwiebach:2009:FirstCourseString,

View File

@@ -44,7 +44,7 @@
version={4.0}]{doclicense} %---- licence version={4.0}]{doclicense} %---- licence
\RequirePackage[nottoc]{tocbibind} %------------ put bibliography in TOC \RequirePackage[nottoc]{tocbibind} %------------ put bibliography in TOC
\RequirePackage[backend=biber, \RequirePackage[backend=biber,
citestyle=numeric-comp, citestyle=numeric-icomp,
sorting=none, sorting=none,
sortcites=true, sortcites=true,
style=ieee, style=ieee,