499 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
			
		
		
	
	
			499 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			TeX
		
	
	
	
	
	
| \documentclass[10pt, aspectratio=169]{beamer}
 | |
| 
 | |
| \usepackage[utf8]{inputenc}
 | |
| \usepackage[T1]{fontenc}
 | |
| \usepackage[british]{babel}
 | |
| \usepackage{csquotes}
 | |
| \usepackage{amsmath}
 | |
| \usepackage{amsfonts}
 | |
| \usepackage{amssymb}
 | |
| \usepackage{mathrsfs}
 | |
| \usepackage{dsfont}
 | |
| \usepackage{upgreek}
 | |
| \usepackage{physics}
 | |
| \usepackage{tensor}
 | |
| \usepackage{graphicx}
 | |
| \usepackage{transparent}
 | |
| \usepackage{tikz}
 | |
| \usepackage{import}
 | |
| \usepackage{booktabs}
 | |
| \usepackage{multicol}
 | |
| \usepackage{multirow}
 | |
| \usepackage{bookmark}
 | |
| \usepackage{xspace}
 | |
| 
 | |
| \usetheme{Singapore}
 | |
| \usecolortheme{crane}
 | |
| \usefonttheme{structurebold}
 | |
| \setbeamertemplate{navigation symbols}{}
 | |
| \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
 | |
| 
 | |
| \author[Finotello]{Riccardo Finotello}
 | |
| \title[D-branes and Deep Learning]{D-branes and Deep Learning}
 | |
| \subtitle{Theoretical and Computational Aspects in String Theory}
 | |
| \institute[UniTO]{%
 | |
|   Scuola di Dottorato in Fisica e Astrofisica
 | |
|   \\[0.5em]
 | |
|   Università degli Studi di Torino
 | |
|   \\
 | |
|   and
 | |
|   \\
 | |
|   I.N.F.N.\ -- sezione di Torino
 | |
| }
 | |
| \date{15th December 2020}
 | |
| 
 | |
| \usetikzlibrary{decorations.markings}
 | |
| \usetikzlibrary{decorations.pathmorphing}
 | |
| \usetikzlibrary{arrows}
 | |
| 
 | |
| \newenvironment{equationblock}[1]{%
 | |
|   \begin{block}{#1}
 | |
|   \vspace*{-0.75\baselineskip}\setlength\belowdisplayshortskip{0.25\baselineskip}
 | |
| }{%
 | |
|   \end{block}
 | |
| }
 | |
| 
 | |
| \newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}}
 | |
| 
 | |
| \newcommand{\firstlogo}{img/unito}
 | |
| \newcommand{\thefirstlogo}{%
 | |
|   \begin{figure}
 | |
|     \centering
 | |
|     \includegraphics[width=7em]{\firstlogo}
 | |
|   \end{figure}
 | |
| }
 | |
| 
 | |
| \newcommand{\secondlogo}{img/infn}
 | |
| \newcommand{\thesecondlogo}{%
 | |
|   \begin{figure}
 | |
|     \centering
 | |
|     \includegraphics[width=7em]{\secondlogo}
 | |
|   \end{figure}
 | |
| }
 | |
| 
 | |
| \setbeamertemplate{title page}{%
 | |
|   \begin{center}
 | |
|     {%
 | |
|       \usebeamercolor{title}
 | |
|       \usebeamerfont{title}
 | |
|       \colorbox{bg}{%
 | |
|         {\Huge \inserttitle}\xspace
 | |
|       }
 | |
|       \vspace{0.5em}
 | |
|     }\par
 | |
|     {%
 | |
|       \usebeamercolor{subtitle}
 | |
|       \usebeamerfont{subtitle}
 | |
|       {\large \it \insertsubtitle}\xspace
 | |
|       \vspace{2em}
 | |
|     }\par
 | |
|     {%
 | |
|       \usebeamercolor{author}
 | |
|       \usebeamerfont{author}
 | |
|       {\Large \insertauthor}\xspace
 | |
|       \vspace{1em}
 | |
|     }\par
 | |
|     {%
 | |
|       \begin{columns}
 | |
|         \centering
 | |
|         \begin{column}{0.3\linewidth}
 | |
|           \centering
 | |
|           \thefirstlogo
 | |
|         \end{column}
 | |
|         \begin{column}{0.4\linewidth}
 | |
|           \centering
 | |
|           \usebeamercolor{institute}
 | |
|           \usebeamerfont{institute}
 | |
|           \insertinstitute{}
 | |
|           \\[1em]
 | |
|           \insertdate{}
 | |
|         \end{column}
 | |
|         \begin{column}{0.3\linewidth}
 | |
|           \centering
 | |
|           \thesecondlogo
 | |
|         \end{column}
 | |
|       \end{columns}
 | |
|     }\par
 | |
|   \end{center}
 | |
| }
 | |
| 
 | |
| \setbeamertemplate{footline}{%
 | |
|   \usebeamerfont{footnote}
 | |
|   \usebeamercolor{footnote}
 | |
|   \hfill
 | |
|   \insertframenumber{}~/~\inserttotalframenumber{}
 | |
|   \hspace{1em}
 | |
|   \vspace{1em}
 | |
|   \par
 | |
| }
 | |
| 
 | |
| % \AtBeginSection[]
 | |
| % {%
 | |
| %   {%
 | |
| %     \setbeamertemplate{footline}{}
 | |
| %     \usebackgroundtemplate{%
 | |
| %       \transparent{0.1}
 | |
| %       \includegraphics[width=\paperwidth]{img/torino.png}
 | |
| %     }
 | |
| %     \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
 | |
| %     \begin{frame}[noframenumbering]{\contentsname}
 | |
| %       \tableofcontents[currentsection]
 | |
| %     \end{frame}
 | |
| %   }
 | |
| % }
 | |
| 
 | |
| 
 | |
| \begin{document}
 | |
| 
 | |
|   {%
 | |
|     \usebackgroundtemplate{%
 | |
|       \transparent{0.1}
 | |
|       \includegraphics[width=\paperwidth]{img/torino.png}
 | |
|     }
 | |
|     \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
 | |
|     \begin{frame}[noframenumbering, plain]
 | |
|       \titlepage{}
 | |
|     \end{frame}
 | |
|   }
 | |
| 
 | |
|   {%
 | |
|     \setbeamertemplate{footline}{}
 | |
|     \usebackgroundtemplate{%
 | |
|       \transparent{0.1}
 | |
|       \includegraphics[width=\paperwidth]{img/torino.png}
 | |
|     }
 | |
|     \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
 | |
|     \begin{frame}[noframenumbering]{\contentsname}
 | |
|       \tableofcontents{}
 | |
|     \end{frame}
 | |
|   }
 | |
| 
 | |
| 
 | |
|   \section[CFT]{Conformal Symmetry and Geometry of the Worldsheet}
 | |
|   
 | |
| 
 | |
|   \subsection[Preliminary]{Preliminary Concepts and Tools}
 | |
| 
 | |
|   \begin{frame}{Action Principle and Conformal Symmetry}
 | |
|     \begin{equationblock}{Polyakov's Action}
 | |
|       \begin{equation*}
 | |
|         S_P\qty[ \upgamma,\, X,\, \uppsi ]
 | |
|         =
 | |
|         -\frac{1}{4\pi}
 | |
|         \int\limits_{-\infty}^{+\infty} \dd{\uptau}
 | |
|         \int\limits_0^{\ell} \dd{\upsigma}
 | |
|         \sqrt{-\det \upgamma}\,
 | |
|         \upgamma^{\upalpha \upbeta}\,
 | |
|         \qty(%
 | |
|           \frac{2}{\upalpha'}\,
 | |
|           \partial_{\upalpha} X^{\upmu}\,
 | |
|           \partial_{\upbeta} X^{\upnu}
 | |
|           +
 | |
|           \uppsi^{\upmu}\,
 | |
|           \uprho_{\upalpha}
 | |
|           \partial_{\upbeta}
 | |
|           \uppsi^{\upnu}
 | |
|         )\,
 | |
|         \upeta_{\upmu\upnu}
 | |
|       \end{equation*}
 | |
|     \end{equationblock}
 | |
| 
 | |
|     \pause
 | |
| 
 | |
|     \begin{columns}
 | |
|       \begin{column}[t]{0.5\linewidth}
 | |
|         \highlight{Symmetries:}
 | |
|         \begin{itemize}
 | |
|           \item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$
 | |
| 
 | |
|           \item \textbf{2D diff.}\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \gamma_{\uplambda \uprho}$
 | |
| 
 | |
|           \item \textbf{Weyl transf.}\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \gamma_{\upalpha \upbeta}$
 | |
|         \end{itemize}
 | |
|       \end{column}
 | |
| 
 | |
|       \pause
 | |
| 
 | |
|       \begin{column}[t]{0.5\linewidth}
 | |
|         \highlight{Conformal symmetry:}
 | |
|         \begin{itemize}
 | |
|           \item \textbf{vanishing} stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$
 | |
|           
 | |
|           \item \textbf{traceless} stress-energy tensor: $\trace{\mathcal{T}} = 0$
 | |
| 
 | |
|           \item \textbf{conformal gauge} $\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$
 | |
|         \end{itemize}
 | |
|       \end{column}
 | |
|     \end{columns}
 | |
|   \end{frame}
 | |
| 
 | |
| 
 | |
|   \begin{frame}{Action Principle and Conformal Symmetry}
 | |
|     \begin{columns}
 | |
|       \begin{column}{0.6\linewidth}
 | |
|         \highlight{%
 | |
|           Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$:
 | |
|         }
 | |
|         \begin{equation*}
 | |
|           \mathcal{T}( z )\, \Upphi_h( w )
 | |
|           \stackrel{z \to w}{\sim}
 | |
|           \frac{h}{(z - w)^2} \Upphi_h( w )
 | |
|           +
 | |
|           \frac{1}{z - w} \partial_w \Upphi_h( w )
 | |
|         \end{equation*}
 | |
|         \begin{equation*}
 | |
|           \mathcal{T}( z )\, \mathcal{T}( w )
 | |
|           \stackrel{z \to w}{\sim}
 | |
|           \frac{\frac{c}{2}}{(z - w)^4}
 | |
|           +
 | |
|           \order{(z - w)^{-2}}
 | |
|         \end{equation*}
 | |
| 
 | |
|         \begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$}
 | |
|           \begin{eqnarray*}
 | |
|             \qty[ \overset{\scriptscriptstyle(-)}{L}_n,\, \overset{\scriptscriptstyle(-)}{L}_m ]
 | |
|             & = &
 | |
|             (n - m) \overset{\scriptscriptstyle(-)}{L}_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0}
 | |
|             \\
 | |
|             \qty[ L_n,\, \overline{L}_m ]
 | |
|             & = &
 | |
|             0
 | |
|           \end{eqnarray*}
 | |
|         \end{equationblock}
 | |
|       \end{column}
 | |
| 
 | |
|       \begin{column}{0.4\linewidth}
 | |
|         \begin{figure}[h]
 | |
|           \centering
 | |
|           \resizebox{0.9\columnwidth}{!}{\import{img}{complex_plane.pgf}}
 | |
|         \end{figure}
 | |
|       \end{column}
 | |
|     \end{columns}
 | |
|   \end{frame}
 | |
| 
 | |
|   \begin{frame}{Action Principle and Conformal Symmetry}
 | |
|     \highlight{Superstrings in $D$ dimensions:}
 | |
|     \begin{equation*}
 | |
|       \mathcal{T}( z )
 | |
|       =
 | |
|       -\frac{1}{\upalpha'}
 | |
|       \partial X( z ) \cdot \partial X( z )
 | |
|       -\frac{1}{2}
 | |
|       \uppsi( z ) \cdot \partial \uppsi( z )
 | |
|       \quad
 | |
|       \Rightarrow
 | |
|       \quad
 | |
|       c = \frac{3}{2} D
 | |
|     \end{equation*}
 | |
| 
 | |
|     \pause
 | |
| 
 | |
|     \begin{block}{$\qty( \uplambda, 0 )~/~\qty( 1 - \uplambda, 0 )$ Ghost System}
 | |
|       Introduce anti-commuting $\qty( b,\, c )$ and commuting $\qty( \upbeta,\, \upgamma )$ conformal fields:
 | |
|       \begin{equation*}
 | |
|         S_{\text{ghost}}\qty[ b,\, c,\, \upbeta,\, \upgamma ]
 | |
|         =
 | |
|         \frac{1}{2\uppi}
 | |
|         \iint \dd{z} \dd{\overline{z}}
 | |
|         \qty(%
 | |
|           b( z )\, \overline{\partial} c( z )
 | |
|           +
 | |
|           \upbeta( z )\, \overline{\partial} \upgamma( z )
 | |
|         )
 | |
|       \end{equation*}
 | |
|       where $\uplambda_b = 2$ and $\uplambda_c = -1$, and $\uplambda_{\upbeta} = \frac{3}{2}$ and $\uplambda_{\upgamma} = -\frac{1}{2}$.
 | |
|     \end{block}
 | |
| 
 | |
|     \pause
 | |
| 
 | |
|     \highlight{Consequence:}
 | |
|     \begin{equation*}
 | |
|       c_{\text{full}} = c + c_{\text{ghost}} = 0
 | |
|       \quad
 | |
|       \Leftrightarrow
 | |
|       \quad
 | |
|       D = 10.
 | |
|     \end{equation*}
 | |
|   \end{frame}
 | |
| 
 | |
| 
 | |
|   \begin{frame}{Extra Dimensions and Compactification}
 | |
|     \begin{block}{Compactification}
 | |
|       \begin{columns}
 | |
|         \begin{column}{0.7\linewidth}
 | |
|           \begin{equation*}
 | |
|             \mathscr{M}^{1,\, 9}
 | |
|             =
 | |
|             \mathscr{M}^{1,\, 3} \otimes \mathscr{X}_6
 | |
|           \end{equation*}
 | |
|           \begin{itemize}
 | |
|             \item $\mathscr{X}_6$ is a \textbf{compact} manifold
 | |
| 
 | |
|             \item $N = 1$ \textbf{supersymmetry} is preserved in 4D
 | |
| 
 | |
|             \item algebra of $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ contained in arising \textbf{gauge group}
 | |
|           \end{itemize}
 | |
|         \end{column}
 | |
| 
 | |
|         \begin{column}{0.3\linewidth}
 | |
|           \centering
 | |
|           \includegraphics[width=0.9\columnwidth]{img/cy}
 | |
|         \end{column}
 | |
|       \end{columns}
 | |
|     \end{block}
 | |
| 
 | |
|     \pause
 | |
| 
 | |
|     \begin{columns}
 | |
|       \begin{column}[t]{0.5\linewidth}
 | |
|         \highlight{Kähler manifolds} $\qty( M,\, g )$ such that
 | |
|         \begin{itemize}
 | |
|           \item $\dim\limits_{\mathds{C}} M = m$
 | |
| 
 | |
|           \item $\mathrm{Hol}( g ) \subseteq \mathrm{SU}( m )$
 | |
| 
 | |
|           \item $g$ is Ricci-flat (equiv.\ $c_1\qty( M )$ vanishes)
 | |
|         \end{itemize}
 | |
|       \end{column}
 | |
| 
 | |
|       \pause
 | |
| 
 | |
|       \begin{column}[t]{0.5\linewidth}
 | |
|         Characterised by \highlight{Hodge numbers}
 | |
|         \begin{equation*}
 | |
|           h^{r,\,s} = \dim\limits_{\mathds{C}} H_{\overline{\partial}}^{r,\,s}\qty( M,\, \mathds{C} )
 | |
|         \end{equation*}
 | |
|         counting the no.\ of harmonic $(r,\,s)$-forms.
 | |
|       \end{column}
 | |
|     \end{columns}
 | |
|   \end{frame}
 | |
| 
 | |
|   \begin{frame}{D-branes and Open Strings}
 | |
|     Polyakov's action naturally introduces \highlight{Neumann b.c.:}
 | |
|     \begin{equation*}
 | |
|       \eval{\partial_{\upsigma} X\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
 | |
|     \end{equation*}
 | |
|     satisfied by \textbf{open and closed} strings living in $D$ dimensions s.t.\ $\square X = 0$.
 | |
| 
 | |
|     \pause
 | |
| 
 | |
|     \begin{equationblock}{T-duality}
 | |
|       \begin{equation*}
 | |
|         X( z, \overline{z} )
 | |
|         =
 | |
|         X( z ) + \overline{X}( \overline{z} )
 | |
|         \quad
 | |
|         \stackrel{T}{\Rightarrow}
 | |
|         \quad
 | |
|         X( z ) - \overline{X}( \overline{z} )
 | |
|         =
 | |
|         Y( z, \overline{z} )
 | |
|         =
 | |
|         Y( z ) + \overline{Y}( \overline{z} )
 | |
|       \end{equation*}
 | |
|     \end{equationblock}
 | |
| 
 | |
|     \pause
 | |
| 
 | |
|     Resulting effect (repeated $p \le D - 1$ times) leads to \highlight{Dirichlet b.c.:}
 | |
|     \begin{equation*}
 | |
|       \eval{\partial_{\upsigma} X^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
 | |
|       \quad
 | |
|       \stackrel{T}{\Rightarrow}
 | |
|       \quad
 | |
|       \eval{\partial_{\uptau} Y^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
 | |
|       \quad
 | |
|       \forall i = 1, 2,\, \dots,\, p
 | |
|     \end{equation*}
 | |
|     thus \textbf{open strings} can be \textbf{constrained} to \highlight{$D(D - p - 1)$-branes.}
 | |
|   \end{frame}
 | |
| 
 | |
|   \begin{frame}{D-branes and Open Strings}
 | |
|     Introducing $Dp$-branes breaks \highlight{$\mathrm{ISO}(1,\, D-1) \rightarrow \mathrm{ISO}( 1, p ) \otimes \mathrm{SO}( D - 1 - p )$.}
 | |
| 
 | |
|     \pause
 | |
| 
 | |
|     \begin{equationblock}{Massless Spectrum (\emph{irrep} of \textbf{little group} $\mathrm{SO}( D - 2 )$}
 | |
|       \begin{equation*}
 | |
|         \mathcal{A}^{\upmu}
 | |
|         \quad \leftrightarrow \quad
 | |
|         \alpha_{-1}^{\upmu} \ket{0}
 | |
|         \qquad
 | |
|         \longrightarrow
 | |
|         \qquad
 | |
|         \begin{tabular}{@{}llll@{}}
 | |
|           $\mathcal{A}^A$
 | |
|           &
 | |
|           $\leftrightarrow$
 | |
|           &
 | |
|           $\alpha_{-1}^A \ket{0},$
 | |
|           &
 | |
|           $A = 0,\, 1,\, \dots,\, p$
 | |
|           \\
 | |
|           $\mathcal{A}^a$
 | |
|           &
 | |
|           $\leftrightarrow$
 | |
|           &
 | |
|           $\alpha_{-1}^a \ket{0},$
 | |
|           &
 | |
|           $a = 1,\, 2,\, \dots,\, D - p - 1$
 | |
|         \end{tabular}
 | |
|       \end{equation*}
 | |
|     \end{equationblock}
 | |
| 
 | |
|     \pause
 | |
| 
 | |
|     \begin{columns}
 | |
|       \begin{column}{0.5\linewidth}
 | |
|         \centering
 | |
|         \resizebox{0.55\columnwidth}{!}{\import{img}{chanpaton.pgf}}
 | |
|       \end{column}
 | |
| 
 | |
|       \begin{column}{0.5\linewidth}
 | |
|         Introducing \textbf{Chan--Paton factors} $\tensor{\uplambda}{^r_{ij}}$, when branes are \textbf{coincident}:
 | |
|         \begin{equation*}
 | |
|           \bigoplus\limits_{r = 1}^N \mathrm{U}_r(1)
 | |
|           \quad
 | |
|           \longrightarrow
 | |
|           \quad
 | |
|           \mathrm{U}( N )
 | |
|         \end{equation*}
 | |
|         \pause
 | |
|         \highlight{Build gauge bosons, fermions and scalars.}
 | |
|       \end{column}
 | |
|     \end{columns}
 | |
|   \end{frame}
 | |
| 
 | |
|   \begin{frame}{Standard Model-like Scenarios}
 | |
|     \centering
 | |
|     \resizebox{0.8\linewidth}{!}{\import{img}{smbranes.pgf}}
 | |
|   \end{frame}
 | |
| 
 | |
| 
 | |
|   \subsection[D-branes at Angles]{D-branes Intersecting at Angles}
 | |
| 
 | |
|   \begin{frame}{Intersecting D-branes}
 | |
|     Consider \highlight{$N$ intersecting $D6$-branes} filling $\mathscr{M}^{1,3}$ and \textbf{embedded in} $\mathds{R}^6$
 | |
| 
 | |
|     \begin{equationblock}{Twist Fields Correlators}
 | |
|       \begin{equation*}
 | |
|         \left\langle \prod\limits_{t = 1}^N \upsigma_{\mathrm{M}_{(t)}}\qty( x_{(t)} ) \right\rangle
 | |
|       \end{equation*}
 | |
|     \end{equationblock}
 | |
|   \end{frame}
 | |
| 
 | |
|   \section[Time Divergences]{Cosmological Backgrounds and Divergences}
 | |
| 
 | |
|   \begin{frame}{BBB}
 | |
|     b
 | |
|   \end{frame}
 | |
| 
 | |
| 
 | |
|   \section[Deep Learning]{Deep Learning the Geometry of String Theory}
 | |
| 
 | |
|   \begin{frame}{CCC}
 | |
|     c
 | |
|   \end{frame}
 | |
| 
 | |
| \end{document}
 |