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Action Principle and Conformal Symmetry

Polyakov’s Action

+00 P4
1 2
el X ] =~ [ dv [[do/=aety v (2 0uX4 06X 4% pu0p0” )
—00 0

Symmetries: Conformal symmetry:
Poincaré transf.. X'* = A" XY + c* vanishing stress-energy tensor:  Typ =0
eF . _ (-1 Ap _ . _
2D diff.: Yig = (J )(XB Yap traceless stress erTergy tensor:  trT 0¢
/ conformal gauge: Yap = €% Nup

Weyl transf.: Yip = € Yap
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Superstrings in D dimensions — Virasoro algebra (central extension of de Witt's algebra):

T(z) = —$8X(z) -0X(z) — %tb(z) -oP(z) = c= gD
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Action Principle and Conformal Symmetry

Superstrings in D dimensions — Virasoro algebra (central extension of de Witt's algebra):

T(z) = —iaX(z) -0X(z) — %1])(2) oP(z) = c= §D

o 2

(A,0) / (1 —A,0) Ghost System

Introduce anti-commuting (b, ¢) and commuting (3, v) conformal fields:

Sghost[b, €, B, Y] = % // dzdz (b(z)gc(z) + B(2) gy(z))

Where }\b =2 and }\C = 71, and Aﬁ = % and A’Y = 7% ‘ [Friedan, Martinec, Shenker (1986)]
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Action Principle and Conformal Symmetry

Superstrings in D dimensions — Virasoro algebra (central extension of de Witt's algebra):

T(z) = —éaX(z) -0X(z) — %1])(2) oP(z) = c= gD

(A,0) / (1 —A,0) Ghost System

Introduce anti-commuting (b, ¢) and commuting (3, v) conformal fields:

Sghost[b, €, B, Y] = % // dzdz (b(z)gc(z) + B(2) gy(z))

where Ay =2 and Ac = —1, and Ag = % and A, = f%.

‘ [Friedan, Martinec, Shenker (1986)]

Consequence:
Crull = C + Cghost = 0 =4 D = 10.
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Extra Dimensions and Compactification

Compactification
%1,9 _ %173 ® %

® 7% is a compact manifold
e N =1 supersymmetry preserved in 4D
® contains algebra of SU(3) ® SU(2) ® U(1)

[code in Hanson (1994)]
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Extra Dimensions and Compactification

Compactification
%1,9 _ %173 ® e%é

® 7% is a compact manifold

e N =1 supersymmetry preserved in 4D
® contains algebra of SU(3) ® SU(2) ® U(1)

[code in Hanson (1994)]

Calabi—-Yau manifolds (M, g) such that:
o dmgM=m
* Hol(g) € SU(m)
® Ric(g) =0 (equiv. c1(M) =0)

‘ [Calabi (1957), Yau (1977), Candelas et al. (1985)] ‘
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Extra Dimensions and Compactification

Compactification
%1,9 _ %173 ® %

® 7% is a compact manifold

e N =1 supersymmetry preserved in 4D
® contains algebra of SU(3) ® SU(2) ® U(1)

[code in Hanson (1994)]

Calabi—Yau manifolds (M, g) such that: Characterised by Hodge numbers
o dmgM=m
* Hol(g) € SU(m)
® Ric(g) =0 (equiv. c1(M) =0) (no. of harmonic (r, s)-forms).

h"* = dime HY*(M, ©)

‘ [Calabi (1957), Yau (1977), Candelas et al. (1985)] ‘
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Polyakov's action naturally introduces Neumann b.c.:

o=/{
=0

o=0

0sX(T,0)

satisfied by open and closed strings in D dim. s.t. OX =0 = X(z,2z) = X(z) + X(2).

437
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D-branes and Open Strings

Polyakov's action naturally introduces Neumann b.c.:
o=/{
0sX(T,0) =0

satisfied by open and closed strings in D dim. s.t. OX =0 = X(z,2) = X(2) + X(2).

T-duality
Consider closed strings on .#1:P~ = #1:0=2 @ S}(R):
D—-1 1 [od
0(0 = 5 nﬁ + mR 182
g = M =—ptp,==(af ") +=(N+a)
0 v v G mR
2 _p_1\2 4 /<
== (g™ + Q<N+a>
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D-branes and Open Strings

Polyakov's action naturally introduces Neumann b.c.:

satisfied by open and closed strings in D dim. s.t. OX =0 = X(z,z) = X(z2) + X(2).

T-duality

Dirichlet b.c. consequence of T-duality on p directions:
o=¢{

X(z) = -X(z) = 0sX'(r,0)] =0 """ 3Xi(tr,0) =0
o=0 =0

thus open strings can be constrained to D(D — p — 1)-branes. ‘ [Polchinski (1995, 1096)]
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Introducing Dp-branes breaks ISO(1, D — 1) — ISO(1, p) ® SO(D — 1 — p) :

A¥ — (A%, A%) = U(1) theory in p + 1 dimensions (and scalars)
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Introducing Dp-branes breaks ISO(1, D — 1) — ISO(1, p) ® SO(D — 1 — p) :

A¥ — (A%, A%) = U(1) theory in p + 1 dimensions (and scalars)

[Chan, Paton (1969)]

N
mry=>"Imi )Ny = UN)
=t 5 /37
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Introducing Dp-branes breaks ISO(1, D — 1) — ISO(1,p) ® SO(D — 1 —p) :

A¥ — (A%, A%) = U(1) theory in p + 1 dimensions (and scalars)

baryonic (Y = 1)

6 E

dr

leptonic (Y = 0)
(‘i) JJf /rr(
[Chan, Paton (1969)] e €5

leptonic (Y = —1)

N
left (Y = -1 right (Y = —1 right (Y =0
mory =S mi N, =y TR e e

ihj=1
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Consider 3 intersecting D6-branes filling .#13 and embedded in R®

I —Se (e X(e)> M(e
<HGM(r) (X(t))> :N<{X(t)7 M(t)}IStSNB)e £l ({ © ()}15:9\'3)
t=1
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Consider 3 intersecting D6-branes filling .#13 and embedded in R®

I = ) cl X(t), Mt
H OMy (X(f)) N({X(t)7 M(t)}létSNB e = ({ © ()}1StsNB
t=1
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Deep Learning

Intersecting D-branes

Consider 3 intersecting D6-branes filling .#*3 and embedded in R®

Twist Fields Correlators

Ng
HGMm (xw) ) = N‘({X(t)7 M(t)}1§t§NB
=1

—Se (el) ({X(f)’ M(t)}1gt§NB

X2 T3)
o p D-branes in factorised internal space:
2)
, ® embedded as lines in R? x R? x R?
@ D) . .
g @ * relative rotations are SO(2) ~ U(1) elements
(ch)
fuge [ ]
- L0 Sg {X(t)’ M(f)}lgtéNB ~ Area {f(t)’ R(t)}létSNB
fo 4 ) maq)
’ D) VA ‘ [Cremades, Ibanez, Marchesano (2003); Pesando (2012)] ‘

6 /37

00000000000 0000



Consider R* x R? (focus on R*):
Dey

! !
(X)) = (Reyy) , X7 — gy € R?

where
S0(4)
R € 500(2) x 02))

that is
[Riy] = {Rwv) ~ OwRivy }
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® y=x+iy=e%"" and 1= u*

® X(t) < X(t—1) worldsheet intersection points

Y4

D) D)
— —

| Dy | Dg) D |

X
e O O I o e e 4

X X@3) X(2) X()
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Ya
® u=x+iy=e""% and U = u* Day Dy
— —
® X(t) < X(t—1) worldsheet intersection points i Dy D) D2
i X
——— T T IO —
X(4) X(3) X(2) X(1)

{&,X(x +i0%) = Uy - 05X (x — i0F) = [R(;)l (03 ®1,) - R(t)] - 95X (x — i0%)
XX, X)) =1
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8uX (u) if z e X (x(e) + €78.1) = U, 1) 02X (x(e) + 54,

0,X(z) = Z = = ]
) {U(?) oaX(@) if z e 02X (X(e) + €70_) = Ui, t41) X (X() +8-),

where .}fz(t) ={zeC|lmzz0orze Dy} and b+ =n+i0",

9/37



00000000080 0000000 00000000 000000000000000

8uX (u) if z e 8, X (x(e) + €2715,) X (xe) + 64),

0,X(z) = ’ L = ”
) {U(?)GEX(H) if z € % X (x(r) + €*75) 2 X (X +8-),

where .}f;) ={zeC|lmzz0orze Dy} and b+ =n+i0",
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Doubling Trick and Spinor Representation

Doubling Trick

9. X (u) if z e 20 8, X (x(e) + €275.) X (xe) + 64),
0,X(z) = Z n = -
Ug 0sX(T) ifze 80 0 X (x(r) + €75) X (X(e) +0-),

where 74 = {z€ € |Imz200r z € Dy} and 65 =7+ 0.

Use Pauli matrices ©= (i1, 0):

. (~) (~)
0:X5(2) = 0. X ()1 = 0X(Xe)+ €7 81) = L (¢, 141) 02X (X(e) +8+) R, 141)

where " )
L (t,t+1) € SU(Q)[_ and 'R(t) t+1) € SU(2)R

9/37



Imw
Sum over all contributions:
Aw +oo

_ 0w, A By

0:%(2) = Jz | r:z—oo ar (—w2)™" (1 - w,)™
Re w T
- = - L R
o% 2 % B3)(w.) (B (w))
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Imw
Sum over all contributions:
Aw +oo

_ 0w, A B,

0:%(2) = Jz | r:Z_oo ar (—w2)™" (1 - w,)™
Re w T
. . - L R
o% 2 % B3)(w.) (B (w))

B (w): 10 . ﬁ2F1(anabn;Cn;wz)
0, n(Wz 0 K, %2’:1(3""'1_@”bn+1—Cn:2—c,,;wz)
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Sequence of the operations:
1. rotation matrix = monodromy matrix
2. contiguity relations = independent hypergeometrics
3. finite action = 2 solutions (no. of d.o.f. is correctly saturated)
4. boundary conditions = fix free constants ¢,
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Sequence of the operations:
1. rotation matrix = monodromy matrix
2. contiguity relations = independent hypergeometrics
3. finite action = 2 solutions (no. of d.o.f. is correctly saturated)
4. boundary conditions = fix free constants ¢,

X254 TA3)
\/
fi2)

D

L
o 27t Sge . = Z (E‘g(t) Mt—l) - fif)‘)
on-she! t=1

. TQ2)
fia) /J\ZA oY1) = Area ({fit)}lstSNB>

Day fuy \ -
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The Solution

Sequence of the operations:
1. rotation matrix = monodromy matrix
2. contiguity relations = independent hypergeometrics
3. finite action = 2 solutions (no. of d.o.f. is correctly saturated)
4. boundary conditions = fix free constants ¢,

Physical Interpretation

Dy

—

® strings no longer confined to plane
® strings form a small bump from the D-brane

\/ ® classical action larger than factorised case
Sooostas, - [RF, Pesando (2019)]

11/ 37



— ll)i_(T, 0) = (R(t))IJ‘tI)i(T, 0) forte (f(t), f(t—l))
P (t,m) =—Pl(r,n) forteR

T(ern) Ty Te-1)
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P (t,m) =—Pl(r,n) forteR

T
O—>

T(ern) Ty Te-1)

- {ll)i_(’f, 0) = (R)',Wi(r,0) for € (%), te-))

H(t) =0 & rte (T(e)> T(e—1))

Tii(ii)=—i£ll)*i,/(5i)gll)ﬁc(ﬁi) = {P(T) L0

12 /37



Expand on a basis of solutions

Ve +(u) ifze ,}ff)

+oo
1l):l:(Ey:I:) = Z bnlpn(zd:) = \IJ(Z) = {q)E,—(U) ifze ¢%<(?)

n=—o0

13 /37



Expand on a basis of solutions

Ve 1 (v) if ze Y

+oo
1l):l:(((-cl:) = Z bnlpn(‘i:l:) = \P(Z) = {q)E,—(U) ifze %é?)

n=—o0

W, b)) = omN ‘7{ % WY =5, = <<*\yn(*), \y(*)> — bg)

13 /37
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Expand on a basis of solutions

Ve +(u) ifze ﬁff)

+oo
1l):l:(((-cl:) = Z bnlbn(‘i:l:) = \P(Z) = {q)E,—(U) ifze %é?)

n=—o0

(W, o) = omN ‘7{ % WY =5, = <<*\yn(*)’ \y(*)> — bg)

Derive the algebra of operators:

2N
[bna bj;q]+ = T <<*lyn*v \P*m>

13 /37



Consider R(;y = "™ € U(1):
\l’(X(t) + 6271"6) = /™€ \l’(X(t) + 5)

where
€(t) = X(ey1) — () +0(() — (1) — 1) = O(o(eyn) — () — 1)

14 /37
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Consider R(;y = "™ € U(1):
W(X(t) + e2”i6) = /™€ W(X(t) + 5)

where
€(t) = X(ey1) — () +0(() — (1) — 1) = O(o(eyn) — () — 1)

by > o+~
W {xo)) =z ] (1- )

t=1 X(t)
. €
o+—=2

Ya(z {xn}) = 2m\/ny n_lﬁ( X(t)>_(

t=1

14 /37



Define the vacuum with respect to by:

by |{X(t)}> =0 for n>1

1
b, 5

6>=0 for nZn(t)—l—%—l—
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Define the vacuum with respect to by:

by |{X(t)}> =0 for n>1

1
b, 5

6>=0 for nZn(t)—l—%+

Theories are subject to consistency conditions:
in-annihilators
bn

out-annihilators

~ s :55£Vér|5a:55*
<{X(t)}|{x(t)}>:1 = LG(t)—i—n(t) b 41 | overlap

| region |
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Define the vacuum with respect to by:

by |{X(t)}> =0 for n>1

1
b, 5

6>=0 for nZn(t)—l—%+

Theories are subject to consistency conditions:
in-annihilators
bn

out-annihilators

{xo{x0})=1 = L=nw+ne=0 b1 | overlap

| region |

15 /37



Compute the OPEs leading to the time dependent stress-energy tensor:

T too — N ne + <2
T(z)z%/\/&, Z tby by z7"T lm n+2z—(t) 2

2 =1 Z—X(t)

n, m=—oo

[RF, Pesando (2019)]

16 / 37
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Compute the OPEs leading to the time dependent stress-energy tensor:

7tT = m—n Nn(t)—i-ﬂﬂ Nnt—i-ﬂzl
T(z Dby bl 27T ) v 2 ™=
®)= n,,,;_oo [ 2 ; Z= X tz X0

[RF, Pesando (2019)]

M
(o) = N (o }) R Hsmm))] Osm

t=1

16 / 37
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Equivalence with Bosonization
By ({0 }) = f oz Dl T o)y

2 (o))
= <{X(t)}|{x(t)}> =N({ew}) H (Xw) — X)) ("(u)+@) (n(,)+e—§‘l)

t=1
t>u

17 /37
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Spin Fields Amplitudes

Equivalence with Bosonization

O In ({x0 M X0 }) = ]{% <{X2?>}<(|t;(|?x(’t{))}<(>t)}>

X(t)

= (I} {xo) =N ({e)) TT (o - x0) o) (0+72)

t=1
t>u

(semi-)phenomenological models involve twist and spin fields and open strings

framework for bosonic open strings with intersecting D-branes

spin fields as boundary changing operators (hidden in defects)

framework for amplitudes (extension to (non) Abelian twist/spin fields?)

17 / 37
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string theory = theory of everything = nuclear forces + gravity
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A Few Words on a Theory of Everything

string theory = theory of everything = nuclear forces + gravity

From the phenomenological point of view:

® cosmological implications
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A Few Words on a Theory of Everything
string theory = theory of everything = nuclear forces + gravity
From the phenomenological point of view:

® cosmological implications

® Big Bang(-like) singularities
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string theory = theory of everything = nuclear forces + gravity

From the phenomenological point of view:
® cosmological implications
® Big Bang(-like) singularities
® toy models of space-like singularities
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A Few Words on a Theory of Everything
string theory = theory of everything = nuclear forces + gravity
From the phenomenological point of view:

® cosmological implications

® Big Bang(-like) singularities

® toy models of space-like singularities

¢

time-dependent orbifold models

‘ [Craps, Kutasov, Rajesh (2002); Liu, Moore, Seiberg (2002)]

18 / 37



Use time-dependent orbifolds to model space-like singularities:

divergent closed string amplitudes = gravitational backreaction?
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Time Divergences
oe

Cosmological Singularities

Use time-dependent orbifolds to model space-like singularities:

divergent closed string amplitudes = gravitational backreaction?

Divergences

Even in simple models (e.g. NBO, more on this later) the 4 tachyons amplitude is divergent in

the open sector at tree level:
d
Ag ~ / T;T«Q{(q)

gr~oo

where

N, 112 e 112
’Q{dosed(q) ~ q4_ﬁx HPJ_H and %pen(q) ~ ql_“ HPL” tr([T17 T2]+ [T37 T4]+)

19 /37



Start from (x, x~, x?, X) € .4 P~1:

u =X
7 =g = ds?=—2dudv+ (Au)® d2? + 55 dx dx
v —x+—%();_)

20 / 37



Start from (x, x~, x?, X) € .4 P~1:

=X
z == . = ds’=—2dudv + (Au)® dz* + 5 dx' dx/
v :X+_1(X2)

2 x—

k=—i(2nA)Jyp =210, = z~z+27n

20 / 37



z = F= = ds’=—2dudv + (Au)® dz* + 5 dx' dx/

k=—i(2nA)Jyp =210, = z~z+27n

Scalars on NBO:

i(kevtlz+k-R) oi (ki viz+K%)
blh k(U v, 2, ) =TT by g () = ——————c

NRNZ 4+
+i 2k Y

—i 2 1
2AZk, v

20 / 37



Scalar—photon interactions:

SS(('SE)D = /de vV—g (—ieg“ﬁaa(d)* Opd — 0gd™ ) + e? g"‘ﬁ;;)c,ca‘3|(1>|2 — % |¢|4)
Q

21 /37



Scalar—photon interactions:
S = [ Ox Vg (~ieg ™ an(d" b~ pd 6) + € g% anan 0 — £ [9I)

Q

Terms involved:

+o0o

N
vl _ v e .
I{N}_ /du|Au|u H¢{k+(i)7l(i)7k(i)ar(i)}(u)
+oo N
vl _ 1+v Y ~
‘7{N}_ /du|A||u| ]:[1¢{k+(i)rI(i)ak(i)’r(i)}(u)

—00
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Scalar QED Interactions

Scalar—photon interactions:

SqEb = / aPx /=g (~ieg™Pan(¢0" Opd — Op " &) + € g*P aqap o)

Q

Terms involved:

+o0

R RV | IR

— 00

v 1+v
75 = /duiAnu\+ H% o}

210l

most terms do not converge due to isolated zeros (I.y = 0) and cannot be recovered even
with a distributional interpretation due to the term oc u™! in the exponential

21 /37



CFT Time Divergences Deep Learning

00000®00

String and Field Theory

So far:
field theory presents divergences (see sQED)

® obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) do not work
¢ divergences are not (only) gravitational
¢ vanishing volume in phase space responsible for the divergence
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String and Field Theory

So far:
field theory presents divergences (see sQED)

® obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) do not work
¢ divergences are not (only) gravitational
¢ vanishing volume in phase space responsible for the divergence

What about string theory?

22 /37



Time Divergences
00e00

String and Field Theory

So far:
field theory presents divergences (see sQED)

® obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) do not work
¢ divergences are not (only) gravitational
¢ vanishing volume in phase space responsible for the divergence

What about string theory?

Massive String States

i

5 2
o4 / (03 ik-X(x, x
Vil &, S, £) = ( s BalEX(x ) + (m) SupX(x, )0 XP (x, x)>e“<’ )

22 /37



Time Divergences
00e00

String and Field Theory

So far:
field theory presents divergences (see sQED)

® obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) do not work
¢ divergences are not (only) gravitational
¢ vanishing volume in phase space responsible for the divergence

What about string theory?

Massive String States

i

5 2
o4 / (03 ik-X(x, x
Vil &, S, £) = ( s BalEX(x ) + (m) SupX(x, )0 XP (x, x)>e“<’ ).

string theory cannot do better than field theory (EFT) if the latter does not exist

22 /37



Introduce the generalised NBO:

u =X
2 o= (A .
1 [ 3 = K= —27[I(A2J+2 + A3J+3) = 270,
W= (h A
1 2 2
v o=t (00 ()

23 /37



000000000000000000 00000080 000000000000000

Introduce the generalised NBO:

u X
z == (m e _
1 [ 3 = K= —27[I(A2J+2 + A3J+3) = 270,
W= (h A
1 2 2
o=t (07 (2))

- 1+, 2 1—p)2 E2+r
1 1 f 1 [( p)* | (I=p) ]_” |L )

e 8kiu | A2 A2 +
21/ 2m)P | AsAsky | Y]

i prni (0) =

23 /37



Time Divergences
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On the Divergences and Their Nature

divergences are present in SQED and open string sector

singularities = massive states are no longer spectators

vanishing volume (compact orbifold directions) = particles “cannot escape”

non compact orbifold directions = interpretation of amplitudes as distributions

issue not restricted to NBO/GNBO but also BO, null brane, etc. (it is a general issue
connected to the geometry of the underlying space)

24 /37
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On the Divergences and Their Nature

® divergences are present in sQED and open string sector

® singularities = massive states are no longer spectators

® vanishing volume (compact orbifold directions) = particles “cannot escape”

® non compact orbifold directions = interpretation of amplitudes as distributions

® issue not restricted to NBO/GNBO but also BO, null brane, etc. (it is a general issue
connected to the geometry of the underlying space)

divergences are hidden into EFT contact terms and interactions with string massive

states: gravity is not the only cause as the same problems are present also in gauge theories.

’ [Arduino, RF, Pesando (2020)] ‘
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Focus on Calabi-Yau 3-folds:

h0,0 — h3,0 =1
_ hr:0 =0 if r#3
RS — dimg HgS(M, C) = hros _ p3-r3-s
hl’l, h2’1 cN
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The Simplest Calabi—Yau

Focus on Calabi-Yau 3-folds:

H0:0 = hp30 =1
o hr0 =0 if r#3
hl‘,S g d|m® Hgs(M7 (D) :> hr"s — h3—l’.,3—5
hbl p2l e N

Complete Intersection Calabi—Yau Manifolds

Intersection of hypersurfaces in
A=P" x ... x P

where

n p;(ZO7 e Z") = i1..4/,inl _Zi—0
P": :
pi(AZ° ..., AZ") =Npi(Z° ..., 2Z")

‘ [Green, Hiibsch (1987); Hiibsch (1992)]
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CICY can be generalised to m projective spaces and k equations. The problem is thus

mapped to:
X INmxk — N

n. 1 1
Pmo| a0 a3
—  hb1 or A%l

n m m
| - -
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CICY can be generalised to m projective spaces and k equations. The problem is thus

mapped to:
X IN™xk — N

hl, 1 or h2, 1
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Representation of the Output

CICY can be generalised to m projective spaces and k equations. The problem is thus

mapped to:
X IN™xk — N

hl, 1 or /727 1

Machine Learning Approach

What is Z in machine learning approach?

B(M) = Zo(M; w) = hP9  st.  In>M>0 | L,,(ZM, h”"’) <e Ye>0
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e optimisation problem = ‘ gradient descent ‘ (or similar)
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optimisation problem = gradient descent (or similar)

use various algorithms and exploit large datasets (more training)
intersection of computer science, mathematics and physics

provide in-depth data analysis of the datasets
8 h‘] 10 20 30 40 50 60 70 80 90 100

10°

count
-
i

-

i

count

-
-1

o
2

[Green et al. (1987)]
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7890 CICY manifolds (full dataset)
® dataset pruning: no product spaces, no “very far" outliers (reduction of 0.49%)

80% training, 10% validation, 10% test
® choose regression, but evaluate using accuracy (round the result)
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7890 CICY manifolds (full dataset)

® dataset pruning: no product spaces, no “very far" outliers (reduction of 0.49%)
80% training, 10% validation, 10% test

® choose regression, but evaluate using accuracy (round the result)

18

16 . ‘. i 3

14 0 .

12

o N & o ®

full clean full clean
Type of distribution Type of distribution
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exploratory data analysis — feature selection — Hodge numbers

| [Ruehle (2020); Erbin, RF (2020)]
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exploratory data analysis — feature selection — Hodge numbers

Correlation Matrix of the Scalar Features

1.00
ap

0.50
==

Cdim_cp
mean_dim_cp -025
median_dim_c|
im_cp_. A
num-cp-2 000
num_cp neql
ini_over --0.25
o, ui_ex
min_deg_&qs -
max_deg eqs 050
mean_deg_eqs
median_deg_eqs -0.75
rarik_matrix
norm_matrix ~1.00

importance (%)
s ° o e °
R
& s & 8 B

14
°
8

num_cp

norm_matrix

Importance of the Scalar Features (w/ matrix)

-
-2

IIl_,-,,I
oMo XxdoNuwa sy
8 % 2888
Yg g g 28888
ESgEeES o aa
5 £ 8 Eds 8 E8 TS
W E 8 28582383870
g2 TE S LET VS
FEEEERET Y g8
E §°2F & §EF
£ EoE

| [Ruehle (2020); Erbi

, RF (2020)]

importance (%)

e o o o o
[
5 & 8 & 8

e
°
S

0.00

Cumulative Importance of the Vector and Matrix Features.

-l

|| -h“
a

s oz = PR
¢ 8 5 & &5 8
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g 8 8

: .

§ 2 5

° c
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[from earn.org]

classification

clustering

or
WORKING

dimensionality
reduction
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https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
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classification

clustering

or
WORKING

dimensionality
reduction
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What is PCA for a X € R"™*P?

® project data such that variance
is maximised

e eigenvectors of XX or the
singular values of X

® isolate signal from background

® case the ML job of finding a
better representation of the input
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What is PCA for a X € R"™*P?

® project data such that variance
is maximised

e eigenvectors of XX or the
singular values of X

® isolate signal from background

® case the ML job of finding a
better representation of the input

00000000 000000080000 000

Dstrsion o the Egenvalues o 3 Wishart Data Mtrx and Marchenka —Psstur Liing Ditributon

,1‘ Ths
/ .
i M
N
N
N\
AN
‘ N
kl
.x
]

ne10t, p a0
singular Value Decomp. - Cumulative Variance Retained

singular Value Decomp. - Variance Retained per Component

10
99.0% of variance retained
0.08 o
508
g 3
2006 2
g §o6
s T
£ 004 E
s H
g 204
& K]
0.02 H
3
02
000 81 components
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175

component of the configuration matrix ccomponent of the configuration matrix
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Configuration Matrix Only

== hV} (30% ratio)
=5l (80% ratio)
=571 (30% ratio)
=121 (80% ratio)

07
61% 61%
06
sa% 33%
Sos
04
03
02
) . .
00
é" & & 3
< 3
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Machine Learning Results

Configuration Matrix Only Best Training Set | (ein, rF 20201 |

= 10
hi (30% ratio) B (30% ratio)
-1 (80% ratio) B3 (0% ratio)
o = 1 (0%t -1 (30% ratio)
— 121 (80% ratio) 09w 121 (80% ratio)
08 08
72%
70%
0.7 0.7 69%
66%
65%
64%
61% 61% 63% 63% .
06 57% 06 57%
N 4% 55% 55%
8 51% Z
Sos  aw — Los
g 46% g
04 04
03 03
27%
02 02 l19% 19%
16%
o1 L20% 10% — 10%
.. .. l )
00 00
& S & \° & o & >
R o & o E K & &
o E P « « ¢
S B o
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Artificial Intelligence and Neural Networks

¢ use gradient descent to optimise weights

learn highly non linear representations of the input

can be “large” to have enough parameters

® can be “deep’ to to learn complicated functions

Layers

fully connected: d)(a(i){’} B VVAU g b{’}]l)
convolutional: ¢ (a1« wilt 4 plii1)

Non linearity ensured by:

¢(z) = ReLU(z) = max (0, z)

hidden layers

(ReLU activation)

‘,
=4

)
W 'BW

Wi 6
M Dxy

=<

=

4R

N
Ter—

7
N
=%

A

=
[\
%
AR
Saes

K7

i
INEN A
7/}1A'pA'p

=

NS
=

w”i}

ANS
==
==X
N NN
o U
§ A

[rendition of the neural network in Bull et al. (2018)] ‘
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Convolutional Neural Networks

Why convolutional?

10
hi1=6.hn=26
0
® retain spacial awareness 1 038
2
® smaller no. of parameters .
(=2 x 105 vs. &~ 2 x 10°) ‘ 06
® weights are shared Z
® CNNs isolate “defining 7 04
features” 8
9
® find patterns as in computer 10 02
vision n
01 2 3 4 5 6 7 8 910111213 14
0.0
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Convolutional Neural Networks

Why convolutional?

® retain spacial awareness

® smaller no. of parameters
(=2 x 10° vs. &~ 2 x 10°)
® weights are shared

® CNNs isolate “defining
features”

® find patterns as in computer
vision
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Convolutional Neural Networks

Why convolutional?

retain spacial awareness

smaller no. of parameters
(=2 x 10° vs. &~ 2 x 10°)

weights are shared

CNNs isolate “defining
features”

find patterns as in computer
vision

Time Divergences
00000000

180012 x 15

100012 x 1

convolutional layers (5 x 5
kernel, ReLU activation)

———/ "\

Deep Learning
0000000000 e0000
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Recent development by deep learning research at Google led to:

® neural networks with better generalisation properties
¢ smaller networks (both parameters and depth)
e different concurrent kernels
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Inception Neural Networks

CFT
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Recent development by deep learning research at Google led to:
® neural networks with better generalisation properties
¢ smaller networks (both parameters and depth)
e different concurrent kernels

concatenation module 1

concatenation module 2 concatenation module 3
hor: 1 x 15 kernel hor: 1 x 15 kernel hor: 1 x 15 kernel
ver: 12 x 1 kernel ver: 12 x 1 kernel

ver: 12 x 1 kernel
(ReLU activation)

(ReLU activation)

(ReLU activation)

o o
< S
E

input layer
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Best Training Set
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Deep Learning Topology with Computer Vision

107
.« . —— 11 (train)
Best Training Set | (ewbin, RF (2020)] o — i1 el
10
nt 0% ratio
=11 (80% ratio 506
— 122 (0% ratio) g
09 mmm b2} (80% ratio) H
g
%04
08
02
72%
07 69%
63% 0.0
01 02 03 04 05 06 07 08 09
06 57% training ratio
§ 107
Sos
08
04
506
03 z
27% g
g
3
0z 9% 19% 04
14% h11 (train)
o 02 —— h11(val)
~+- h21 (train)
—=- h21 (val)
00 0.0
N o N . 01 02 03 04 05 06 07 08 09
& P ¢ -
o \&" & & & training ratio

S
B
[see Erbin’s talk at string_data 2020]
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Why deep learning in physics?

o reliable predictive method
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A Few Comments and Future Directions

Why deep learning in physics?

reliable predictive method (provided good data analysis)
reliable source of inspiration (provided good data analysis)
reliable generalisation method (provided good data analysis)
CNNs are powerful tools (this is the first time in physics!)
interdisciplinary approach = win-win situation!

O O O O O
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A Few Comments and Future Directions

Why deep learning in physics?

reliable predictive method (provided good data analysis)
reliable source of inspiration (provided good data analysis)
reliable generalisation method (provided good data analysis)
CNNs are powerful tools (this is the first time in physics!)
interdisciplinary approach = win-win situation!

O O O O O

What now?

o representation learning = what is the best way to represent CICYs?

o study invariances = invariances should not influence the result (graph representations?)
o higher dimensions = what about CICY 4-folds?

o geometric deep learning = explain the geometry of the "Al" behind deep learning!

o reinforcement learning = give the rules, not the result!
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The End?

¢ D-branes at angles and defect CFT —  spin and twist

fields
¢ time dependent orbifolds —  strings and divergences

¢ deep learning —  CICY and topological properties

THANK YOU

Deep Learning
0000000000000 0e
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