D-branes and Deep Learning

Theoretical and Computational Aspects in String Theory

Riccardo Finotello

Scuola di Dottorato in Fisica e Astrofisica
Università degli Studi di Torino
and
I.N.F.N. – sezione di Torino

Contents

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Concepts and Tools
D-branes Intersecting at Angles
Fermions and Point-like Defect CFT

Cosmological Backgrounds and Divergences

Orbifolds and Cosmological Toy Models Null Boost Orbifold

Deep Learning the Geometry of String Theory

Machine Learning and Deep Learning Machine Learning for String Theory Al Implementations for Geometry and Strings

Contents

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Concepts and Tools D-branes Intersecting at Angles Fermions and Point-like Defect CFT

Cosmological Backgrounds and Divergences

Orbifolds and Cosmological Toy Models Null Boost Orbifold

Deep Learning the Geometry of String Theory

Machine Learning and Deep Learning
Machine Learning for String Theory
Al Implementations for Geometry and Strings

Polyakov's Action

$$S_P[\gamma, X, \psi] = -rac{1}{4\pi}\int\limits_{-\infty}^{+\infty}\mathrm{d} au\int\limits_{0}^{\ell}\mathrm{d}\sigma\,\sqrt{-\det\gamma}\,\gamma^{lphaeta}\left(rac{2}{lpha'}\,\partial_lpha X^\mu\,\partial_eta X^
u + \psi^\mu\,
ho_lpha\partial_eta\psi^
u
ight)\eta_{\mu
u}$$

Polyakov's Action

$$S_P[\gamma, X, \psi] = -rac{1}{4\pi} \int\limits_0^{+\infty} \mathrm{d} au \int\limits_0^\ell \mathrm{d}\sigma \, \sqrt{-\det\gamma} \, \gamma^{lphaeta} \left(rac{2}{lpha'} \, \partial_lpha X^\mu \, \partial_eta X^
u + \psi^\mu \,
ho_lpha \partial_eta \psi^
u
ight) \eta_{\mu
u}$$

Symmetries:

Poincaré transf.: $X'^{\mu} = \Lambda^{\mu}_{\ \nu} X^{\nu} + c^{\mu}$ 2D diff.: $\gamma'_{\alpha\beta} = \left(J^{-1}\right)_{\alpha\beta}^{\quad \lambda\rho} \gamma_{\lambda\rho}$ Weyl transf.: $\gamma'_{\alpha\beta} = e^{2\omega} \gamma_{\alpha\beta}$

Conformal symmetry:

 $\begin{array}{ll} \mbox{vanishing stress-energy tensor:} & \mathcal{T}_{\alpha\beta} = 0 \\ \mbox{traceless stress-energy tensor:} & \mbox{tr}\,\,\mathcal{T} = 0 \\ \mbox{conformal gauge:} & \gamma_{\alpha\beta} = e^{\varphi}\,\eta_{\alpha\beta} \end{array}$

Superstrings in D dimensions $\longrightarrow Virasoro$ algebra (central extension of de Witt's algebra):

$$\mathcal{T}(z) = -\frac{1}{\alpha'}\partial X(z)\cdot\partial X(z) - \frac{1}{2}\psi(z)\cdot\partial\psi(z) \quad \Rightarrow \quad c = \frac{3}{2}D$$

Superstrings in D dimensions $\longrightarrow Virasoro$ algebra (central extension of de Witt's algebra):

$$\mathcal{T}(z) = -\frac{1}{\alpha'}\partial X(z)\cdot\partial X(z) - \frac{1}{2}\psi(z)\cdot\partial\psi(z) \quad \Rightarrow \quad c = \frac{3}{2}D$$

$(\lambda,0)$ / $(1-\lambda,0)$ Ghost System

Introduce anti-commuting (b, c) and commuting (β, γ) conformal fields:

$$S_{\mathsf{ghost}}[b,\,c,\,eta,\,\gamma] = rac{1}{2\pi} \iint \mathrm{d}z\,\mathrm{d}\overline{z}\,ig(b(z)\,\overline{\partial}c(z) + eta(z)\,\overline{\partial}\gamma(z)ig)$$

where
$$\lambda_b=2$$
 and $\lambda_c=-1$, and $\lambda_\beta=\frac{3}{2}$ and $\lambda_\gamma=-\frac{1}{2}$.

[Friedan, Martinec, Shenker (1986)]

Superstrings in D dimensions $\longrightarrow Virasoro\ algebra$ (central extension of de Witt's algebra):

$$\mathcal{T}(z) = -\frac{1}{\alpha'}\partial X(z) \cdot \partial X(z) - \frac{1}{2}\psi(z) \cdot \partial \psi(z) \quad \Rightarrow \quad c = \frac{3}{2}D$$

$(\lambda,0)$ / $(1-\lambda,0)$ Ghost System

Introduce anti-commuting (b, c) and commuting (β, γ) conformal fields:

$$S_{\mathsf{ghost}}[b,\,c,\,eta,\,\gamma] = rac{1}{2\pi} \iint \mathrm{d}z\,\mathrm{d}\overline{z}\,ig(b(z)\,\overline{\partial}c(z) + eta(z)\,\overline{\partial}\gamma(z)ig)$$

where $\lambda_b=2$ and $\lambda_c=-1$, and $\lambda_\beta=\frac{3}{2}$ and $\lambda_\gamma=-\frac{1}{2}$.

[Friedan, Martinec, Shenker (1986)]

Consequence:

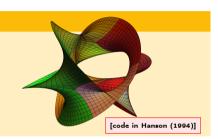
$$c_{\mathsf{full}} = c + c_{\mathsf{ghost}} = 0 \quad \Leftrightarrow \quad D = 10.$$

Extra Dimensions and Compactification

Compactification

$$\mathcal{M}^{1,9} = \mathcal{M}^{1,3} \otimes \mathscr{X}_6$$

- \mathscr{X}_6 is a **compact** manifold
- *N* = 1 **supersymmetry** preserved in 4D
- contains algebra of $SU(3) \otimes SU(2) \otimes U(1)$



Extra Dimensions and Compactification

Compactification

$$\mathcal{M}^{1,9} = \mathcal{M}^{1,3} \otimes \mathscr{X}_6$$

- \mathscr{X}_6 is a **compact** manifold
- *N* = 1 **supersymmetry** preserved in 4D
- contains algebra of $SU(3) \otimes SU(2) \otimes U(1)$

Calabi–Yau manifolds (M, g) such that:

- $\dim_{\mathbb{C}} M = m$
- $\operatorname{Hol}(g) \subseteq \operatorname{SU}(m)$
- $\operatorname{Ric}(g) \equiv 0$ (equiv. $c_1(M) \equiv 0$)

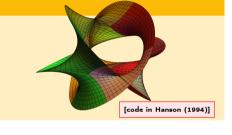
[Calabi (1957), Yau (1977), Candelas et al. (1985)]

Extra Dimensions and Compactification

Compactification

$$\mathcal{M}^{1,9} = \mathcal{M}^{1,3} \otimes \mathscr{X}_6$$

- \mathscr{X}_6 is a **compact** manifold
- N=1 supersymmetry preserved in 4D
- contains algebra of $SU(3) \otimes SU(2) \otimes U(1)$



Calabi–Yau manifolds (M, g) such that:

- $\dim_{\mathbb{C}} M = m$
- $\operatorname{Hol}(g) \subseteq \operatorname{SU}(m)$
- $\operatorname{Ric}(g) \equiv 0$ (equiv. $c_1(M) \equiv 0$)

[Calabi (1957), Yau (1977), Candelas et *al.* (1985)]

Characterised by **Hodge numbers**

$$h^{r,s} = \dim_{\mathbb{C}} H^{r,s}_{\overline{\partial}}(M, \mathbb{C})$$

(no. of harmonic (r, s)-forms).

Polyakov's action naturally introduces Neumann b.c.:

$$\partial_{\sigma}X(\tau,\sigma)\bigg|_{\sigma=0}^{\sigma=\ell}=0$$

satisfied by **open and closed strings** in *D* dim. s.t. $\Box X = 0 \Rightarrow X(z, \overline{z}) = X(z) + \overline{X}(\overline{z})$.

Polyakov's action naturally introduces Neumann b.c.:

$$\partial_{\sigma}X(\tau,\sigma)\bigg|_{\sigma=0}^{\sigma=\ell}=0$$

satisfied by **open and closed strings** in *D* dim. s.t. $\Box X = 0 \Rightarrow X(z, \overline{z}) = X(z) + \overline{X}(\overline{z})$.

T-duality

Consider **closed strings** on $\mathcal{M}^{1,D-1} = \mathcal{M}^{1,D-2} \otimes S^1(R)$:

$$\begin{cases} \alpha_0^{D-1} &= \frac{1}{\sqrt{2\alpha'}} \left(n \frac{\alpha'}{R} + mR \right) \\ \widetilde{\alpha}_0^{D-1} &= \frac{1}{\sqrt{2\alpha'}} \left(n \frac{\alpha'}{R} - mR \right) \end{cases} \Rightarrow M^2 = -p^{\mu} p_{\mu} = \frac{2}{\alpha'} \left(\alpha_0^{D-1} \right)^2 + \frac{4}{\alpha'} (\mathrm{N} + a)$$
$$= \frac{2}{\alpha'} \left(\widetilde{\alpha}_0^{D-1} \right)^2 + \frac{4}{\alpha'} \left(\widetilde{\mathrm{N}} + a \right)$$

Polyakov's action naturally introduces Neumann b.c.:

$$\partial_{\sigma}X(\tau,\sigma)\bigg|_{\sigma=0}^{\sigma=\ell}=0$$

satisfied by **open and closed strings** in *D* dim. s.t. $\Box X = 0 \Rightarrow X(z, \overline{z}) = X(z) + \overline{X}(\overline{z})$.

T-duality

Dirichlet b.c. consequence of **T-duality** on *p* directions:

$$\overline{X}(z) \mapsto -\overline{X}(z) \quad \Rightarrow \quad \partial_{\sigma} X^{i}(\tau, \sigma) \Big|_{\sigma=0}^{\sigma=\ell} = 0 \quad \stackrel{T-duality}{\longrightarrow} \quad \partial_{\tau} \widetilde{X}^{i}(\tau, \sigma) \Big|_{\sigma=0}^{\sigma=\ell} = 0$$

thus **open strings** can be **constrained** to D(D-p-1)-branes.

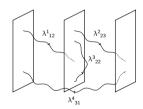
[Polchinski (1995, 1996)]

Introducing
$$Dp$$
-branes breaks $\overline{\mathrm{ISO}(1,D-1)} \to \overline{\mathrm{ISO}(1,p)} \otimes \overline{\mathrm{SO}(D-1-p)}$:

$$\mathcal{A}^{\mu} \to (\mathcal{A}^{A}, \mathcal{A}^{a}) \quad \Rightarrow \quad \mathrm{U}(1) \text{ theory in } p+1 \text{ dimensions (and scalars)}$$

Introducing Dp-branes breaks $ISO(1, D-1) \rightarrow ISO(1, p) \otimes SO(D-1-p)$:

$$\mathcal{A}^{\mu} \to (\mathcal{A}^A, \mathcal{A}^a) \quad \Rightarrow \quad \mathrm{U}(1) \text{ theory in } p+1 \text{ dimensions (and scalars)}$$



[Chan, Paton (1969)]

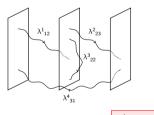
$$|n; r\rangle = \sum_{i,j=1}^{N} |n; i, j\rangle \lambda^{r}_{ij} \Rightarrow U(N)$$

CFT

D-branes and Open Strings

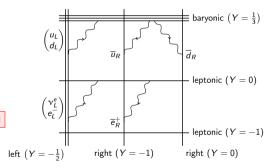
Introducing Dp-branes breaks $\overline{\mathrm{ISO}(1,D-1)} \to \overline{\mathrm{ISO}(1,p)} \otimes \overline{\mathrm{SO}(D-1-p)}$:

$$\mathcal{A}^{\mu} o (\mathcal{A}^A,\,\mathcal{A}^a) \quad \Rightarrow \quad \mathrm{U}(1) \text{ theory in } p+1 \text{ dimensions (and scalars)}$$



[Chan, Paton (1969)]

$$|n; r\rangle = \sum_{i,j=1}^{N} |n; i, j\rangle \lambda^{r}_{ij} \Rightarrow U(N)$$



Intersecting D-branes

Consider 3 intersecting D6-branes filling $\mathcal{M}^{1,3}$ and embedded in \mathbb{R}^6

Twist Fields Correlators

$$\left\langle \prod_{t=1}^{N_B} \sigma_{\mathrm{M}_{(t)}} \big(\mathsf{x}_{(t)} \big) \right\rangle = \mathcal{N} \Big(\big\{ \mathsf{x}_{(t)}, \, \mathrm{M}_{(t)} \big\}_{1 \leq t \leq N_B} \Big) e^{-S_{E(\mathbf{cl})} \Big(\big\{ \mathsf{x}_{(t)}, \, \mathrm{M}_{(t)} \big\}_{1 \leq t \leq N_B} \Big)}$$

Intersecting D-branes

Consider 3 intersecting D6-branes filling $\mathcal{M}^{1,3}$ and embedded in \mathbb{R}^6

Twist Fields Correlators

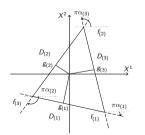
$$\left\langle \prod_{t=1}^{N_B} \sigma_{\mathrm{M}_{(t)}} \big(x_{(t)} \big) \right\rangle = \mathcal{N} \Big(\big\{ x_{(t)}, \, \mathrm{M}_{(t)} \big\}_{1 \leq t \leq N_B} \Big) e^{-S_{E(\mathbf{cl})} \Big(\big\{ x_{(t)}, \, \mathrm{M}_{(t)} \big\}_{1 \leq t \leq N_B} \Big)}$$

Intersecting D-branes

Consider 3 intersecting D6-branes filling $\mathcal{M}^{1,3}$ and **embedded in** \mathbb{R}^6

Twist Fields Correlators

$$\left\langle \prod_{t=1}^{N_B} \sigma_{\mathbf{M}_{(t)}} (x_{(t)}) \right\rangle = \mathcal{N} \left(\left\{ x_{(t)}, \, \mathbf{M}_{(t)} \right\}_{1 \leq t \leq N_B} \right) e^{-S_{E(\mathbf{cl})} \left(\left\{ x_{(t)}, \, \mathbf{M}_{(t)} \right\}_{1 \leq t \leq N_B} \right)}$$



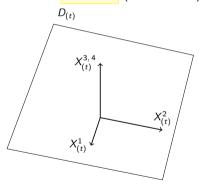
D-branes in **factorised** internal space:

- embedded as lines in $\mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2$
- relative rotations are $SO(2) \simeq U(1)$ elements
- $\bullet \ \ S_{E}^{(\text{cl})}\Big(\big\{x_{(t)}, \ \mathbf{M}_{(t)}\big\}_{1 \leq t \leq N_B}\Big) \sim \mathsf{Area}\Big(\big\{f_{(t)}, \ \mathbf{R}_{(t)}\big\}_{1 \leq t \leq N_B}\Big)$

[Cremades, Ibanez, Marchesano (2003); Pesando (2012)]

SO(4) Rotations

Consider $\mathbb{R}^4 \times \mathbb{R}^2$ (focus on \mathbb{R}^4):



$$\left(X_{(t)}\right)^I = \left(R_{(t)}\right)^I{}_J X^J - g_{(t)}^I \in \mathbb{R}^4$$

where

that is

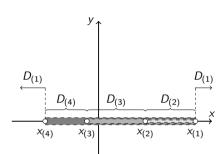
$$R_{(t)} \in rac{\mathrm{SO}(4)}{\mathrm{S}(\mathrm{O}(2) imes \mathrm{O}(2))}$$

$$[R_{(t)}] = \{R_{(t)} \sim \mathcal{O}_{(t)}R_{(t)}\}$$

Boundary Conditions and Open Strings

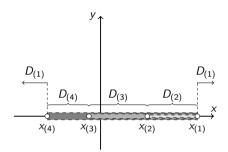
•
$$u = x + iy = e^{\tau_e + i\sigma}$$
 and $\overline{u} = u^*$

•
$$x_{(t)} < x_{(t-1)}$$
 worldsheet intersection points



Boundary Conditions and Open Strings

- $u = x + iv = e^{\tau_e + i\sigma}$ and $\overline{u} = u^*$
- $x_{(t)} < x_{(t-1)}$ worldsheet intersection points



Branch Cuts and Discontinuities for $x \in D_{(t)}$

$$\begin{cases} \partial_u X(x+i0^+) &= U_{(t)} \cdot \partial_{\overline{u}} \overline{X}(x-i0^+) = \left[R_{(t)}^{-1} \cdot (\sigma_3 \otimes \mathbb{1}_2) \cdot R_{(t)} \right] \cdot \partial_{\overline{u}} \overline{X}(x-i0^+) \\ X(x_{(t)}, x_{(t)}) &= f_{(t)} \end{cases}$$

Doubling Trick and Spinor Representation

Doubling Trick

$$\partial_z \mathcal{X}(z) = \begin{cases} \partial_u X(u) & \text{if } z \in \mathscr{H}_>^{(\overline{t})} \\ U_{(\overline{t})} \, \partial_{\overline{u}} \overline{X}(\overline{u}) & \text{if } z \in \mathscr{H}_<^{(\overline{t})} \end{cases} \Rightarrow \begin{aligned} \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i} \delta_+) &= \mathcal{U}_{(t,\,t+1)} \, \partial_z \mathcal{X}(x_{(t)} + \delta_+), \\ \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i} \delta_-) &= \widetilde{\mathcal{U}}_{(t,\,t+1)} \, \partial_z \mathcal{X}(x_{(t)} + \delta_-), \end{aligned}$$

where
$$\mathscr{H}^{(t)}_{\geqslant}=\left\{z\in\mathbb{C}\mid\operatorname{Im}z\geqslant0\text{ or }z\in D_{(t)}\right\}$$
 and $\delta_{\pm}=\eta\pm i0^{+}.$

Doubling Trick and Spinor Representation

Doubling Trick

$$\partial_z \mathcal{X}(z) = \begin{cases} \partial_u X(u) & \text{if } z \in \mathscr{H}_>^{(\overline{t})} \\ U_{(\overline{t})} \, \partial_{\overline{u}} \overline{X}(\overline{u}) & \text{if } z \in \mathscr{H}_<^{(\overline{t})} \end{cases} \Rightarrow \begin{cases} \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i}\delta_+) & \mathcal{U}_{(t,\,t+1)} \, \partial_z \mathcal{X}(x_{(t)} + \delta_+), \\ \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i}\delta_-) & \mathcal{U}_{(t,\,t+1)} \, \partial_z \mathcal{X}(x_{(t)} + \delta_-), \end{cases}$$
 where $\mathscr{H}_>^{(t)} = \left\{ z \in \mathbb{C} \mid \operatorname{Im} z \geq 0 \text{ or } z \in D_{(t)} \right\}$ and $\delta_\pm = \eta \pm i0^+.$

Doubling Trick and Spinor Representation

Doubling Trick

$$\partial_z \mathcal{X}(z) = \begin{cases} \partial_u X(u) & \text{if } z \in \mathscr{H}_>^{(\overline{t})} \\ U_{(\overline{t})} \, \partial_{\overline{u}} \overline{X}(\overline{u}) & \text{if } z \in \mathscr{H}_<^{(\overline{t})} \end{cases} \Rightarrow \begin{cases} \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i} \delta_+) \neq \mathcal{U}_{(t,\,t+1)} \, \delta_z \mathcal{X}(x_{(t)} + \delta_+), \\ \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i} \delta_-) \neq \widetilde{\mathcal{U}}_{(t,\,t+1)} \, \delta_z \mathcal{X}(x_{(t)} + \delta_-), \end{cases}$$
 where $\mathscr{H}_>^{(t)} = \{ z \in \mathbb{C} \mid \operatorname{Im} z \geq 0 \text{ or } z \in D_{(t)} \}$ and $\delta_\pm = \eta \pm i0^+.$

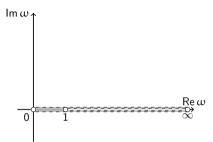
Use Pauli matrices $\tau = (i \mathbb{1}_2, \vec{\sigma})$:

$$\partial_{z}\mathcal{X}_{(s)}(z) = \partial_{z}\mathcal{X}^{I}(z)\,\tau_{I} \quad \Rightarrow \quad \partial_{z}\mathcal{X}(x_{(t)} + e^{2\pi i}\,\delta_{\pm}) = \overset{(\sim)}{\mathcal{L}}_{(t,\,t+1)}^{(\sim)}\,\partial_{z}\mathcal{X}(x_{(t)} + \delta_{\pm}) \overset{(\sim)}{\mathcal{R}}_{(t,\,t+1)}^{(\sim)}$$

where

$$\overset{(\sim)}{\mathcal{L}}_{(t,\,t+1)} \in \mathrm{SU}(2)_L \quad \text{and} \quad \overset{(\sim)}{\mathcal{R}}_{(t,\,t+1)} \in \mathrm{SU}(2)_R$$

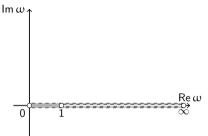
Hypergeometric Basis



Sum over all contributions:

$$egin{aligned} \partial_z \mathcal{X}(z) &= rac{\partial \omega_z}{\partial z} \sum_{l,\,r=-\infty}^{+\infty} c_{lr} \left(-\omega_z
ight)^{\mathcal{A}_{lr}} \left(1-\omega_z
ight)^{\mathcal{B}_{lr}} \ & imes B_{0,\,l}^{(L)}(\omega_z) \left(B_{0,\,r}^{(R)}(\omega_z)
ight)^T \end{aligned}$$

Hypergeometric Basis



Sum over all contributions:

$$egin{aligned} \partial_z \mathcal{X}(z) &= rac{\partial \omega_z}{\partial z} \sum_{l,\,r=-\infty}^{+\infty} c_{lr} \left(-\omega_z
ight)^{A_{lr}} \left(1-\omega_z
ight)^{B_{lr}} \ & imes B_{0,\,l}^{(L)}(\omega_z) \left(B_{0,\,r}^{(R)}(\omega_z)
ight)^T \end{aligned}$$

Basis of Solutions

$$B_{0,n}(\omega_z) = \begin{pmatrix} 1 & 0 \\ 0 & K_n \end{pmatrix} \begin{pmatrix} \frac{1}{\Gamma(c_n)} {}_2F_1(a_n, b_n; c_n; \omega_z) \\ \frac{(-\omega_z)^{1-c_n}}{\Gamma(2-c_n)} {}_2F_1(a_n+1-c_n, b_n+1-c_n; 2-c_n; \omega_z) \end{pmatrix}$$

The Solution

Sequence of the operations:

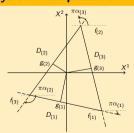
- 1. rotation matrix = monodromy matrix
- 2. contiguity relations \Rightarrow independent hypergeometrics
- 3. finite action \Rightarrow 2 solutions (no. of d.o.f. is correctly saturated)
- **4.** boundary conditions \Rightarrow fix free constants c_{lr}

The Solution

Sequence of the operations:

- 1. rotation matrix = monodromy matrix
- 2. contiguity relations \Rightarrow independent hypergeometrics
- 3. finite action \Rightarrow 2 solutions (no. of d.o.f. is correctly saturated)
- **4.** boundary conditions \Rightarrow fix free constants c_{lr}

Physical Interpretation



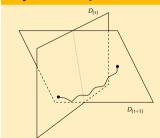
$$\begin{split} 2\pi\alpha' \left. S_{\mathbb{R}^4} \right|_{\text{on-shell}} &= \sum_{t=1}^3 \left(\frac{1}{2} \left| g_{(t)}^{\perp} \right| \left| f_{(t-1)} - f_{(t)} \right| \right) \\ &= \text{Area} \Big(\left\{ f_{(t)} \right\}_{1 \leq t \leq N_B} \Big) \end{split}$$

The Solution

Sequence of the operations:

- 1. rotation matrix = monodromy matrix
- 2. contiguity relations \Rightarrow independent hypergeometrics
- 3. finite action \Rightarrow 2 solutions (no. of d.o.f. is correctly saturated)
- **4.** boundary conditions \Rightarrow fix free constants c_{lr}

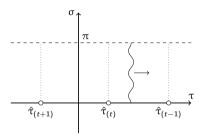
Physical Interpretation



- strings no longer confined to plane
- strings form a *small bump* from the D-brane
- classical action larger than factorised case

[RF, Pesando (2019)]

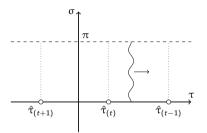
Fermions on the Strip



Action of Boundary Changing Operators

$$\begin{cases} \psi_{-}^{i}(\tau,0) &= \left(R_{(t)}\right)^{I}{}_{J}\psi_{+}^{J}(\tau,0) & \text{for } \tau \in \left(\hat{\tau}_{(t)},\,\hat{\tau}_{(t-1)}\right) \\ \psi_{-}^{I}(\tau,\pi) &= -\psi_{+}^{I}(\tau,\pi) & \text{for } \tau \in \mathbb{R} \end{cases}$$

Fermions on the Strip



Action of Boundary Changing Operators

Action of Boundary Changing Operators
$$\begin{cases} \psi_-^i(\tau,0) &= \left(R_{(t)}\right)^I{}_J \psi_+^J(\tau,0) \quad \text{for } \tau \in \left(\hat{\tau}_{(t)},\,\hat{\tau}_{(t-1)}\right) \\ \psi_-^I(\tau,\pi) &= -\psi_+^I(\tau,\pi) \quad \text{for } \tau \in \mathbb{R} \end{cases}$$

$$\mathcal{T}_{\pm\pm}(\xi_{\pm}) = -i \frac{\mathcal{T}}{4} \psi_{\pm, I}^{*}(\xi_{\pm}) \stackrel{\leftrightarrow}{\partial} \psi_{\pm}^{I}(\xi_{\pm}) \quad \Rightarrow \quad \begin{cases} \dot{H}(\tau) = 0 & \Leftrightarrow \quad \tau \in (\tau_{(t)}, \tau_{(t-1)}) \\ \dot{P}(\tau) \neq 0 \end{cases}$$

Conserved Product and Operators

Expand on a basis of solutions

$$\psi_{\pm}(\xi_{\pm}) = \sum_{n=-\infty}^{+\infty} b_n \psi_n(\xi_{\pm}) \qquad \Rightarrow \qquad \Psi(z) = \begin{cases} \psi_{E,+}(u) & \text{if } z \in \mathscr{H}_{>}^{(\overline{t})} \\ \psi_{E,-}(u) & \text{if } z \in \mathscr{H}_{<}^{(\overline{t})} \end{cases}$$

Conserved Product and Operators

Expand on a basis of solutions

$$\psi_{\pm}(\xi_{\pm}) = \sum_{n=-\infty}^{+\infty} b_n \psi_n(\xi_{\pm}) \qquad \Rightarrow \qquad \Psi(z) = \begin{cases} \psi_{E,+}(u) & \text{if } z \in \mathscr{H}_{>}^{(\overline{t})} \\ \psi_{E,-}(u) & \text{if } z \in \mathscr{H}_{<}^{(\overline{t})} \end{cases}$$

Conserved Product and Dual Basis

$$\langle \langle {}^* \Psi_n, \Psi_m \rangle = 2\pi \mathcal{N} \oint \frac{\mathrm{d}z}{2\pi i} {}^* \Psi_n {}^* \Psi_m = \delta_{n, m} \quad \Rightarrow \quad \left\langle \left\langle {}^* \Psi_n {}^{(*)}, \Psi^{(*)} \right\rangle = b_n^{(\dagger)}$$

Conserved Product and Operators

Expand on a basis of solutions

$$\psi_{\pm}(\xi_{\pm}) = \sum_{n=-\infty}^{+\infty} b_n \psi_n(\xi_{\pm}) \qquad \Rightarrow \qquad \Psi(z) = \begin{cases} \psi_{\mathcal{E},+}(u) & \text{if } z \in \mathscr{H}_{>}^{(\overline{t})} \\ \psi_{\mathcal{E},-}(u) & \text{if } z \in \mathscr{H}_{<}^{(\overline{t})} \end{cases}$$

Conserved Product and Dual Basis

$$\langle \langle {}^* \psi_n, \, \psi_m \rangle = 2\pi \mathcal{N} \oint \frac{\mathrm{d}z}{2\pi i} \, {}^* \Psi_n \, {}^* \Psi_m = \delta_{n, \, m} \quad \Rightarrow \quad \left\langle \left\langle {}^* \Psi_n \, {}^{(*)}, \, \Psi^{(*)} \, \right\rangle = b_n^{(\dagger)}$$

Derive the algebra of operators:

$$\left[b_n, b_m^{\dagger}\right]_+ = \frac{2\mathcal{N}}{T} \left\langle \left\langle \Psi_n^*, \Psi_m^* \right\rangle \right.$$

Twisted Complex Fermions

Consider $R_{(t)} = e^{i\pi\alpha_{(t)}} \in U(1)$:

$$\Psi(x_{(t)} + e^{2\pi i}\delta) = e^{i\pi\epsilon_{(t)}}\Psi(x_{(t)} + \delta)$$

where

$$\epsilon_{(t)} = \alpha_{(t+1)} - \alpha_{(t)} + \theta \left(\alpha_{(t)} - \alpha_{(t+1)} - 1\right) - \theta \left(\alpha_{(t+1)} - \alpha_{(t)} - 1\right)$$

Twisted Complex Fermions

Consider $R_{(t)} = e^{i\pi\alpha_{(t)}} \in U(1)$:

$$\Psi(x_{(t)} + e^{2\pi i}\delta) = e^{i\pi\epsilon_{(t)}}\Psi(x_{(t)} + \delta)$$

where

$$\epsilon_{(t)} = \alpha_{(t+1)} - \alpha_{(t)} + \theta(\alpha_{(t)} - \alpha_{(t+1)} - 1) - \theta(\alpha_{(t+1)} - \alpha_{(t)} - 1)$$

Basis of Solutions

$$\Psi_n(z; \{x_{(t)}\}) = \mathcal{N}_{\Psi} z^{-n} \prod_{t=1}^{N} \left(1 - \frac{z}{x_{(t)}}\right)^{n_{(t)} + \frac{e_{(t)}}{2}}$$

$$^{*}\Psi_{n}(z; \{x_{(t)}\}) = \frac{1}{2\pi\mathcal{N}\mathcal{N}_{\Psi}} z^{n-1} \prod_{t=1}^{N} \left(1 - \frac{z}{x_{(t)}}\right)^{-\widetilde{n}_{(t)} + \frac{\epsilon_{(t)}}{2}}$$

Vacua

Define the **vacuum** with respect to b_n :

$$b_n \left| \left\{ x_{(t)} \right\} \right\rangle = 0 \quad \text{for} \quad n \ge 1$$
 $b_n \left| \widetilde{0} \right\rangle = 0 \quad \text{for} \quad n \ge n_{(t)} + \frac{\epsilon_{(t)}}{2} + \frac{1}{2}$

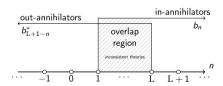
Vacua

Define the **vacuum** with respect to b_n :

$$b_n \left| \left\{ x_{(t)} \right\} \right\rangle = 0 \quad \text{for} \quad n \ge 1$$
 $b_n \left| \widetilde{0} \right\rangle = 0 \quad \text{for} \quad n \ge n_{(t)} + \frac{\epsilon_{(t)}}{2} + \frac{1}{2}$

Theories are subject to consistency conditions:

$$\langle \{x_{(t)}\}|\{x_{(t)}\}\rangle = 1 \quad \Rightarrow \quad L = n_{(t)} + \widetilde{n}_{(t)}$$



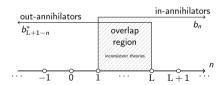
Vacua

Define the **vacuum** with respect to b_n :

$$b_n \left| \left\{ x_{(t)} \right\} \right\rangle = 0 \quad \text{for} \quad n \ge 1$$
 $b_n \left| \widetilde{0} \right\rangle = 0 \quad \text{for} \quad n \ge n_{(t)} + \frac{\epsilon_{(t)}}{2} + \frac{1}{2}$

Theories are subject to consistency conditions:

$$\langle \{x_{(t)}\}|\{x_{(t)}\}\rangle = 1 \quad \Rightarrow \quad L = n_{(t)} + \widetilde{n}_{(t)} = 0$$



Compute the OPEs leading to the time dependent stress-energy tensor:

$$\mathcal{T}(z) = \frac{\pi T}{2} \mathcal{N}_{\Psi}^{2} \sum_{n, m=-\infty}^{+\infty} : b_{n} b_{m}^{*} : z^{-n-m} \left[\frac{m-n}{2} + 2 \sum_{t=1}^{N} \frac{n_{(t)} + \frac{\epsilon_{(t)}}{2}}{z - x_{(t)}} \right] + \frac{1}{2} \left(\sum_{t=1}^{N} \frac{n_{(t)} + \frac{\epsilon_{(t)}}{2}}{z - x_{(t)}} \right)^{2}$$

[RF, Pesando (2019)]

Stress-energy Tensor and CFT Approach

Compute the OPEs leading to the time dependent stress-energy tensor:

$$\mathcal{T}(z) = \frac{\pi T}{2} \mathcal{N}_{\Psi}^{2} \sum_{n, m = -\infty}^{+\infty} : b_{n} b_{m}^{*} : z^{-n-m} \left[\frac{m-n}{2} + 2 \sum_{t=1}^{N} \frac{n_{(t)} + \frac{\epsilon_{(t)}}{2}}{z - x_{(t)}} \right] + \frac{1}{2} \left(\sum_{t=1}^{N} \frac{n_{(t)} + \frac{\epsilon_{(t)}}{2}}{z - x_{(t)}} \right)^{2}$$

[RF, Pesando (2019)]

Invariant Vacuum and Spin Fields

$$\left|\left\{x_{(t)}\right\}\right\rangle = \mathcal{N}\left(\left\{x_{(t)}\right\}\right) \operatorname{R}\left[\prod_{t=1}^{M} S_{(t)}(x_{(t)})\right] \left|0\right\rangle_{\operatorname{SL}_{2}(\mathbb{R})}$$

Spin Fields Amplitudes

Equivalence with Bosonization

$$\begin{split} \partial_{x_{(t)}} \ln \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle &= \oint\limits_{x_{(t)}} \frac{\mathrm{d}z}{2\pi i} \frac{\left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle}{\left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle} \\ &\Rightarrow \quad \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle &= \mathcal{N} \left(\left\{ \varepsilon_{(t)} \right\} \right) \prod_{i=1}^{N} \left(x_{(u)} - x_{(t)} \right)^{\left(n_{(u)} + \frac{\varepsilon_{(u)}}{2} \right) \left(n_{(t)} + \frac{\varepsilon_{(t)}}{2} \right)} \end{split}$$

Spin Fields Amplitudes

Equivalence with Bosonization

$$\begin{split} \partial_{x_{(t)}} \ln \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle &= \oint\limits_{x_{(t)}} \frac{\mathrm{d}z}{2\pi i} \frac{\left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle}{\left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle} \\ &\Rightarrow \quad \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle &= \mathcal{N} \left(\left\{ \varepsilon_{(t)} \right\} \right) \prod_{\substack{t=1 \\ t=1}}^{N} \left(x_{(u)} - x_{(t)} \right)^{\left(n_{(u)} + \frac{\varepsilon_{(u)}}{2} \right) \left(n_{(t)} + \frac{\varepsilon_{(t)}}{2} \right)} \end{split}$$

- (semi-)phenomenological models involve twist and spin fields and open strings
- framework for bosonic open strings with intersecting D-branes
- spin fields as boundary changing operators (hidden in defects)
- framework for amplitudes (extension to (non) Abelian twist/spin fields?)

Contents

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Concepts and Tools
D-branes Intersecting at Angles
Fermions and Point-like Defect CFT

Cosmological Backgrounds and Divergences

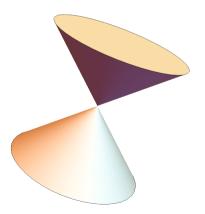
Orbifolds and Cosmological Toy Models Null Boost Orbifold

Deep Learning the Geometry of String Theory

Machine Learning and Deep Learning
Machine Learning for String Theory
Al Implementations for Geometry and Strings

string theory = theory of everything = nuclear forces + gravity

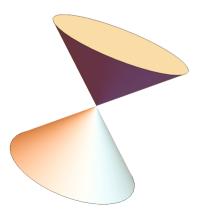
string theory = theory of everything = nuclear forces + gravity



From the phenomenological point of view:

cosmological implications

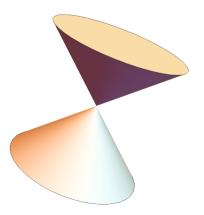
string theory = theory of everything = nuclear forces + gravity



From the phenomenological point of view:

- cosmological implications
- Big Bang(-like) singularities

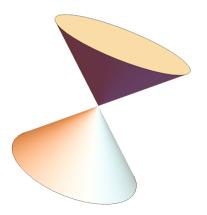
string theory = theory of everything = nuclear forces + gravity



From the phenomenological point of view:

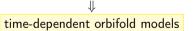
- cosmological implications
- Big Bang(-like) singularities
- toy models of space-like singularities

string theory = theory of everything = nuclear forces + gravity



From the phenomenological point of view:

- cosmological implications
- Big Bang(-like) singularities
- toy models of space-like singularities



[Craps, Kutasov, Rajesh (2002); Liu, Moore, Seiberg (2002)]

Cosmological Singularities

Use time-dependent orbifolds to model space-like singularities:

divergent closed string amplitudes ⇒ gravitational backreaction?

Cosmological Singularities

Use time-dependent orbifolds to model space-like singularities:

divergent closed string amplitudes ⇒ gravitational backreaction?

Divergences

Even in simple models (e.g. NBO, more on this later) the 4 tachyons amplitude is divergent in the open sector at tree level:

$$A_4 \sim \int\limits_{q \sim \infty} rac{\mathrm{d} q}{|q|} \mathscr{A}(q)$$

where

$$\mathscr{A}_{\mathsf{closed}}(q) \sim q^{4-lpha' \|ec{
ho}_{\perp}\|^2} \qquad \mathsf{and} \qquad \mathscr{A}_{\mathsf{open}}(q) \sim q^{1-lpha' \|ec{
ho}_{\perp}\|^2} \operatorname{tr}([T_1,\ T_2]_+[T_3,\ T_4]_+)$$

Null Boost Orbifold

Start from $(x^+, x^-, x^2, \vec{x}) \in \mathcal{M}^{1, D-1}$:

$$\begin{cases} u = x^{-} \\ z = \frac{x^{2}}{\Delta x^{-}} \\ v = x^{+} - \frac{1}{2} \frac{(x^{2})^{2}}{x^{-}} \end{cases} \Rightarrow ds^{2} = -2 du dv + (\Delta u)^{2} dz^{2} + \delta_{ij} dx^{i} dx^{j}$$

Null Boost Orbifold

Start from $(x^+, x^-, x^2, \vec{x}) \in \mathcal{M}^{1, D-1}$:

$$\begin{cases} u = x^{-} \\ z = \frac{x^{2}}{\Delta x^{-}} \\ v = x^{+} - \frac{1}{2} \frac{(x^{2})^{2}}{x^{-}} \end{cases} \Rightarrow ds^{2} = -2 du dv + (\Delta u)^{2} dz^{2} + \delta_{ij} dx^{j} dx^{j}$$

Killing Vector and Null Boost Orbifold

$$\kappa = -i(2\pi\Delta)J_{+2} = 2\pi\partial_z \quad \Rightarrow \quad z \sim z + 2\pi n$$

Null Boost Orbifold

Start from $(x^+, x^-, x^2, \vec{x}) \in \mathcal{M}^{1, D-1}$:

$$\begin{cases} u = x^{-} \\ z = \frac{x^{2}}{\Delta x^{-}} \\ v = x^{+} - \frac{1}{2} \frac{(x^{2})^{2}}{x^{-}} \end{cases} \Rightarrow ds^{2} = -2 du dv + (\Delta u)^{2} dz^{2} + \delta_{ij} dx^{i} dx^{j}$$

Killing Vector and Null Boost Orbifold

$$\kappa = -i(2\pi\Delta)J_{+2} = 2\pi\partial_z \quad \Rightarrow \quad z \sim z + 2\pi n$$

Scalars on NBO:

$$\Phi_{\{k_{+}, l, \vec{k}, r\}}(u, v, z, \vec{x}) = e^{i(k_{+}v + lz + \vec{k} \cdot \vec{x})} \widetilde{\Phi}_{\{k_{+}, l, \vec{k}, r\}}(u) = \frac{e^{i(k_{+}v + lz + \vec{k} \cdot \vec{x})}}{\sqrt{(2\pi)^{D} |2\Delta k_{+}u|}} e^{-i\frac{2}{2\Delta^{2}k_{+}} \frac{1}{u} + i\frac{||\vec{k}||^{2} + r}{2k_{+}}u}$$

Scalar QED Interactions

Scalar-photon interactions:

$$S_{\mathsf{sQED}}^{(\mathsf{int})} = \int\limits_{\Omega} \mathrm{d}^D x \, \sqrt{-g} \left(-i \, e \, g^{\alpha\beta} a_{\alpha} (\varphi^* \, \partial_{\beta} \varphi - \partial_{\beta} \varphi^* \, \varphi) + e^2 \, g^{\alpha\beta} a_{\alpha} a_{\beta} |\varphi|^2 - \frac{g_4}{4} \, |\varphi|^4 \right)$$

Scalar QED Interactions

Scalar-photon interactions:

$$S_{\mathsf{sQED}}^{(\mathsf{int})} = \int \mathrm{d}^D x \, \sqrt{-g} \left(-i \, e \, g^{\alpha\beta} a_{\alpha} (\varphi^* \, \partial_{\beta} \varphi - \partial_{\beta} \varphi^* \, \varphi) + e^2 \, g^{\alpha\beta} a_{\alpha} a_{\beta} |\varphi|^2 - \frac{g_4}{4} \, |\varphi|^4 \right)$$

Terms involved:

$$\mathcal{I}_{\{N\}}^{[\nu]} = \int_{-\infty}^{+\infty} du \, |\Delta u| u^{\nu} \prod_{i=1}^{N} \widetilde{\Phi}_{\{k_{+(i)}, l_{(i)}, \vec{k}_{(i)}, r_{(i)}\}}(u)$$

$$\mathcal{J}_{\{N\}}^{[\nu]} = \int_{-\infty}^{+\infty} du \, |\Delta| |u|^{1+\nu} \prod_{i=1}^{N} \widetilde{\Phi}_{\{k_{+(i)}, l_{(i)}, \vec{k}_{(i)}, r_{(i)}\}}(u)$$

Scalar QED Interactions

Scalar-photon interactions:

$$S_{\mathsf{sQED}}^{(\mathsf{int})} = \int \mathrm{d}^D x \, \sqrt{-g} \left(-i \, e \, g^{\alpha\beta} a_{\alpha} (\varphi^* \, \partial_{\beta} \varphi - \partial_{\beta} \varphi^* \, \varphi) + e^2 \, g^{\alpha\beta} a_{\alpha} a_{\beta} |\varphi|^2 - \frac{g_4}{4} \, |\varphi|^4 \right)$$

Terms involved:

$$\mathcal{I}_{\{N\}}^{[\nu]} = \int_{-\infty}^{+\infty} du \, |\Delta u| u^{\nu} \prod_{i=1}^{N} \widetilde{\Phi}_{\{k_{+(i)}, l_{(i)}, \vec{k}_{(i)}, r_{(i)}\}}(u)$$

$$\mathcal{J}_{\{N\}}^{[\nu]} = \int_{-\infty}^{+\infty} du \, |\Delta| |u|^{1+\nu} \prod_{i=1}^{N} \widetilde{\Phi}_{\{k_{+(i)}, l_{(i)}, \vec{k}_{(i)}, r_{(i)}\}}(u)$$

most terms do not converge due to isolated zeros ($l_{(*)} \equiv 0$) and cannot be recovered even with a distributional interpretation due to the term $\propto u^{-1}$ in the exponential

So far:

- field theory presents **divergences** (see sQED)
- obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) do not work
- divergences are not (only) gravitational
- vanishing volume in phase space responsible for the divergence

String and Field Theory

So far:

- field theory presents **divergences** (see sQED)
- obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) do not work
- divergences are not (only) gravitational
- vanishing volume in phase space responsible for the divergence

What about string theory?

String and Field Theory

So far:

- field theory presents **divergences** (see sQED)
- obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) do not work
- divergences are not (only) gravitational
- vanishing volume in phase space responsible for the divergence

What about string theory?

Massive String States

$$V_{M}(x; k, S, \xi) = : \left(\frac{i}{\sqrt{2\alpha'}} \xi_{\alpha} \partial_{x}^{2} X^{\alpha}(x, x) + \left(\frac{i}{\sqrt{2\alpha'}}\right)^{2} S_{\alpha\beta} \partial_{x} X^{\alpha}(x, x) \partial_{x} X^{\beta}(x, x)\right) e^{ik \cdot X(x, x)} :$$

String and Field Theory

So far:

- field theory presents **divergences** (see sQED)
- obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) do not work
- divergences are not (only) gravitational
- vanishing volume in phase space responsible for the divergence

What about string theory?

Massive String States

$$V_{M}(x; k, S, \xi) = : \left(\frac{i}{\sqrt{2\alpha'}} \xi_{\alpha} \partial_{x}^{2} X^{\alpha}(x, x) + \left(\frac{i}{\sqrt{2\alpha'}}\right)^{2} S_{\alpha\beta} \partial_{x} X^{\alpha}(x, x) \partial_{x} X^{\beta}(x, x)\right) e^{ik \cdot X(x, x)} :$$

string theory cannot do better than field theory (EFT) if the latter does not exist

Resolution and Motivation

Introduce the generalised NBO:

$$\begin{cases} u = x^{-} \\ z = \frac{1}{2x^{-}} \left(\frac{x^{2}}{\Delta_{2}} + \frac{x^{3}}{\Delta_{3}} \right) \\ w = \frac{1}{2x^{-}} \left(\frac{x^{2}}{\Delta_{2}} - \frac{x^{3}}{\Delta_{3}} \right) \\ v = x^{+} - \frac{1}{2x^{-}} \left((x^{2})^{2} + (x^{3})^{2} \right) \end{cases} \Rightarrow \kappa = -2\pi i (\Delta_{2}J_{+2} + \Delta_{3}J_{+3}) = 2\pi \partial_{z}$$

Resolution and Motivation

Introduce the generalised NBO:

$$\begin{cases} u = x^{-} \\ z = \frac{1}{2x^{-}} \left(\frac{x^{2}}{\Delta_{2}} + \frac{x^{3}}{\Delta_{3}} \right) \\ w = \frac{1}{2x^{-}} \left(\frac{x^{2}}{\Delta_{2}} - \frac{x^{3}}{\Delta_{3}} \right) \\ v = x^{+} - \frac{1}{2x^{-}} \left((x^{2})^{2} + (x^{3})^{2} \right) \end{cases} \Rightarrow \kappa = -2\pi i (\Delta_{2}J_{+2} + \Delta_{3}J_{+3}) = 2\pi \partial_{z}$$

No isolated zeros ⇒ distributional Interpretation

$$\widetilde{\Phi}_{\{k_{+}, p, l, \vec{k}, r\}}(u) = \frac{1}{2\sqrt{(2\pi)^{D}|\Delta_{2}\Delta_{3}k_{+}|}} \frac{1}{|u|} e^{-i\left(\frac{1}{8k_{+}u}\left[\frac{(l+p)^{2}}{\Delta_{2}^{2}} + \frac{(l-p)^{2}}{\Delta_{3}^{2}}\right] - \frac{\|\vec{k}\|^{2}+r}{2k_{+}}u\right)}$$

On the Divergences and Their Nature

- divergences are present in sQED and open string sector
- singularities ⇒ massive states are no longer spectators
- vanishing volume (**compact orbifold directions**) ⇒ particles "cannot escape"
- non compact orbifold directions ⇒ interpretation of amplitudes as distributions
- issue not restricted to NBO/GNBO but also BO, null brane, etc. (it is a **general issue** connected to the geometry of the underlying space)

On the Divergences and Their Nature

- divergences are present in sQED and **open string** sector
- singularities \Rightarrow massive states are no longer spectators
- vanishing volume (compact orbifold directions) ⇒ particles "cannot escape"
- non compact orbifold directions ⇒ interpretation of amplitudes as distributions
- issue not restricted to NBO/GNBO but also BO, null brane, etc. (it is a general issue connected to the geometry of the underlying space)

divergences are hidden into EFT contact terms and interactions with string massive states: gravity is not the only cause as the same problems are present also in gauge theories.

[Arduino, RF, Pesando (2020)]

Contents

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Concepts and Tools
D-branes Intersecting at Angles
Fermions and Point-like Defect CFT

Cosmological Backgrounds and Divergences

Orbifolds and Cosmological Toy Models
Null Boost Orbifold

Deep Learning the Geometry of String Theory

Machine Learning and Deep Learning
Machine Learning for String Theory
Al Implementations for Geometry and Strings

The Simplest Calabi-Yau

Focus on Calabi–Yau 3-folds:

$$h^{r,s} = \dim_{\mathbb{C}} H^{r,s}_{\overline{\partial}}(M, \mathbb{C})$$
 \Rightarrow
$$\begin{cases} h^{0,0} & = h^{3,0} = 1\\ h^{r,0} & = 0 \text{ if } r \neq 3\\ h^{r,s} & = h^{3-r,3-s}\\ h^{1,1}, h^{2,1} \in \mathbb{N} \end{cases}$$

The Simplest Calabi-Yau

Focus on Calabi–Yau 3-folds:

$$h^{r,s} = \dim_{\mathbb{C}} H^{r,s}_{\overline{\partial}}(M,\mathbb{C})$$
 \Rightarrow
$$\begin{cases} h^{0,0} &= h^{3,0} = 1\\ h^{r,0} &= 0 \text{ if } r \neq 3\\ h^{r,s} &= h^{3-r,3-s}\\ h^{1,1}, h^{2,1} \in \mathbb{N} \end{cases}$$

Complete Intersection Calabi-Yau Manifolds

Intersection of hypersurfaces in

$$\mathcal{A} = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$$

where

$$\mathbb{P}^n: \begin{cases} p_i(Z^0, \ldots, Z^n) &= P_{i_1 \ldots i_i} Z^{i_1} \ldots Z^{i_i} = 0 \\ p_i(\lambda Z^0, \ldots, \lambda Z^n) &= \lambda^i p_i(Z^0, \ldots, Z^n) \end{cases}$$

[Green, Hübsch (1987); Hübsch (1992)]

Representation of the Output

CICY can be generalised to m projective spaces and k equations. The problem is thus mapped to:

R.

 $\mathbb{N}^{m \times k}$

--->

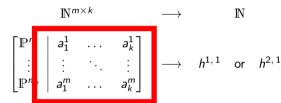
IN

$$\begin{bmatrix} \mathbb{P}^{n_1} & a_1^1 & \dots & a_k^1 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{P}^{n_m} & a_1^m & \dots & a_k^m \end{bmatrix} \longrightarrow h^{1,1} \text{ or } h^{2,1}$$

 \mathscr{R} :

Representation of the Output

CICY can be generalised to m projective spaces and k equations. The problem is thus mapped to:



Representation of the Output

CICY can be generalised to m projective spaces and k equations. The problem is thus mapped to:

$$\mathbb{N}^{m imes k} \longrightarrow \mathbb{N}$$

$$\begin{bmatrix} \mathbb{P}' & \mid a_1^1 & \dots & a_k^1 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{P}^n, \mid a_1^m & \dots & a_k^m \end{bmatrix} \longrightarrow h^{1,1} \text{ or } h^{2,1}$$

Machine Learning Approach

What is \mathcal{R} in machine learning approach?

R:

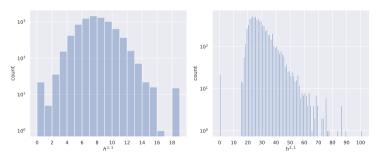
$$\mathscr{R}(M) o \mathscr{R}_n(M; w) o \widehat{h}^{p, \, q} \qquad \text{s.t.} \qquad \exists n > M > 0 \quad | \quad \mathcal{L}_n\Big(\widehat{h}^{p, \, q}, \, h^{p, \, q}\Big) < \varepsilon \quad \forall \varepsilon > 0$$

• optimisation problem ⇒ gradient descent (or similar)

- **optimisation problem** ⇒ **gradient descent** (or similar)
- use various algorithms and exploit large datasets (more training)

- optimisation problem ⇒ gradient descent (or similar)
- use various algorithms and exploit large datasets (more training)
- intersection of computer science, mathematics and physics

- optimisation problem ⇒ gradient descent (or similar)
- use various algorithms and exploit large datasets (more training)
- intersection of computer science, mathematics and physics
- provide in-depth data analysis of the datasets



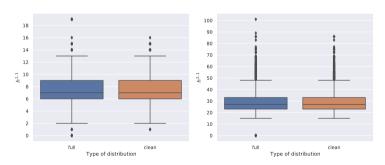
[Green et al. (1987)]

Dataset

- 7890 CICY manifolds (full dataset)
- dataset pruning: no product spaces, no "very far" outliers (reduction of 0.49%)
- 80% training, 10% validation, 10% test
- choose **regression**, but evaluate using **accuracy** (round the result)

Dataset

- 7890 CICY manifolds (full dataset)
- dataset pruning: no product spaces, no "very far" outliers (reduction of 0.49%)
- 80% training, 10% validation, 10% test
- choose **regression**, but evaluate using **accuracy** (round the result)



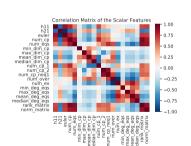
Exploratory Data Analysis

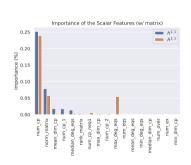
exploratory data analysis \rightarrow feature **selection** \rightarrow Hodge numbers

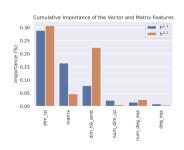
[Ruehle (2020); Erbin, RF (2020)]

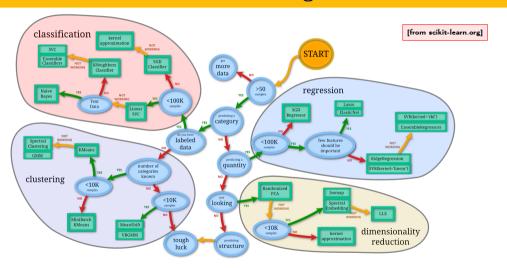
Exploratory Data Analysis

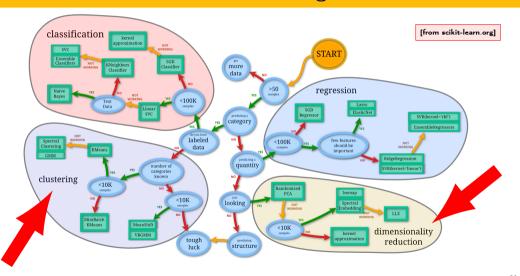
exploratory data analysis \rightarrow feature **selection** \rightarrow Hodge numbers

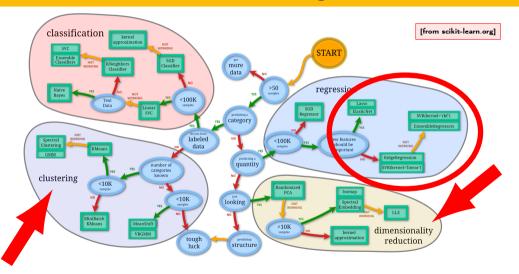












A Word on PCA

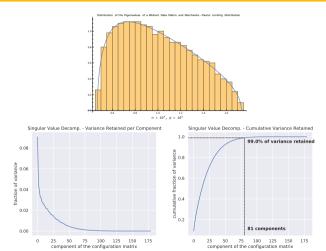
What is PCA for a $X \in \mathbb{R}^{n \times p}$?

- project data such that variance is maximised
- eigenvectors of XX^T or the singular values of X
- isolate signal from background
- ease the ML job of finding a better representation of the input

A Word on PCA

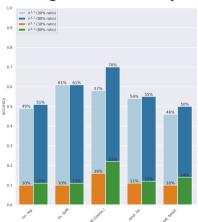
What is PCA for a $X \in \mathbb{R}^{n \times p}$?

- project data such that variance is maximised
- eigenvectors of XX^T or the singular values of X
- isolate signal from background
- ease the ML job of finding a better representation of the input



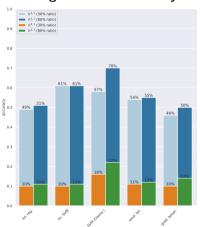
Machine Learning Results

Configuration Matrix Only

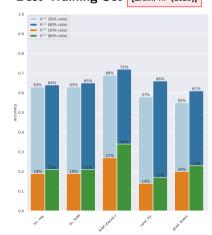


Machine Learning Results

Configuration Matrix Only



Best Training Set [Erbin, RF (2020)]



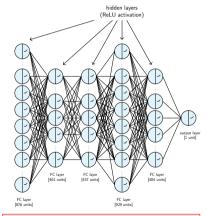
Artificial Intelligence and Neural Networks

- use gradient descent to optimise weights
- learn highly **non linear** representations of the input
- can be "large" to have enough parameters
- can be "deep" to to learn complicated functions

Layers

Non linearity ensured by:

$$\phi(z) = \text{ReLU}(z) = \max(0, z)$$

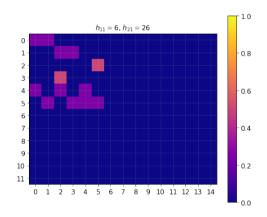


[rendition of the neural network in Bull et al. (2018)]

Convolutional Neural Networks

Why convolutional?

- retain spacial awareness
- smaller no. of parameters $(\approx 2 \times 10^5 \text{ vs.} \approx 2 \times 10^6)$
- weights are **shared**
- CNNs isolate "defining features"
- find patterns as in computer vision



Convolutional Neural Networks

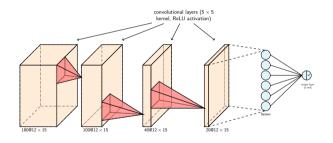
Why convolutional?

- retain spacial awareness
- smaller no. of parameters $(\approx 2 \times 10^5 \text{ vs.} \approx 2 \times 10^6)$
- weights are shared
- CNNs isolate "defining features"
- find patterns as in computer vision

Convolutional Neural Networks

Why convolutional?

- retain spacial awareness
- smaller no. of parameters $(\approx 2 \times 10^5 \text{ vs.} \approx 2 \times 10^6)$
- weights are shared
- CNNs isolate "defining features"
- find patterns as in computer vision



Recent development by deep learning research at Google led to:

- neural networks with better **generalisation properties**
- smaller networks (both parameters and depth)
- different concurrent kernels

Inception Neural Networks

concatenation module 2

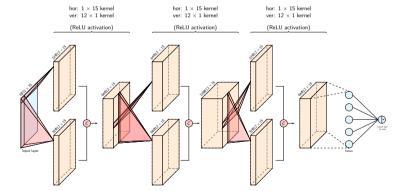
concatenation module 3

Recent development by deep learning research at Google led to:

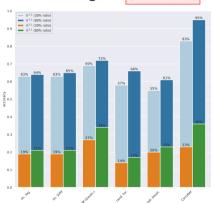
• neural networks with better **generalisation properties**

concatenation module 1

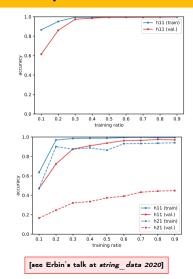
- smaller networks (both parameters and depth)
- different concurrent kernels



Deep Learning Topology with Computer Vision



Deep Learning Topology with Computer Vision



Why deep learning in physics?

o reliable predictive method

Why deep learning in physics?

- o reliable **predictive method** (provided good data analysis)
- o reliable source of inspiration

Why deep learning in physics?

- o reliable **predictive method** (provided good data analysis)
- o reliable source of inspiration (provided good data analysis)
- o reliable generalisation method

Why deep learning in physics?

- o reliable **predictive method** (provided good data analysis)
- o reliable source of inspiration (provided good data analysis)
- o reliable generalisation method (provided good data analysis)
- CNNs are powerful tools (this is the first time in physics!)
- o interdisciplinary approach = win-win situation!

Why deep learning in physics?

- o reliable **predictive method** (provided good data analysis)
- o reliable source of inspiration (provided good data analysis)
- o reliable generalisation method (provided good data analysis)
- CNNs are powerful tools (this is the first time in physics!)
- o interdisciplinary approach = win-win situation!

What now?

- ∘ representation learning ⇒ what is the best way to represent CICYs?
- \circ study invariances \Rightarrow invariances should not influence the result (graph representations?)
- ∘ higher dimensions ⇒ what about CICY 4-folds?
- \circ geometric deep learning \Rightarrow explain the geometry of the "AI" behind deep learning!
- \circ reinforcement learning \Rightarrow give the rules, not the result!

The End?

- D-branes at angles and defect CFT → spin and twist fields
- time dependent orbifolds → strings and divergences
- deep learning → CICY and topological properties

THANK YOU