\documentclass[10pt, aspectratio=169]{beamer} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[british]{babel} \usepackage{csquotes} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{mathrsfs} \usepackage{dsfont} \usepackage{upgreek} \usepackage{physics} \usepackage{tensor} \usepackage{graphicx} \usepackage{transparent} \usepackage{tikz} \usepackage{import} \usepackage{booktabs} \usepackage{multicol} \usepackage{multirow} \usepackage{bookmark} \usepackage{xspace} \usetheme{Singapore} \usecolortheme{crane} \usefonttheme{structurebold} \setbeamertemplate{navigation symbols}{} \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} \author[Finotello]{Riccardo Finotello} \title[D-branes and Deep Learning]{D-branes and Deep Learning} \subtitle{Theoretical and Computational Aspects in String Theory} \institute[UniTO]{% Scuola di Dottorato in Fisica e Astrofisica \\[0.5em] Università degli Studi di Torino \\ and \\ I.N.F.N.\ -- sezione di Torino } \date{15th December 2020} \usetikzlibrary{decorations.markings} \usetikzlibrary{decorations.pathmorphing} \usetikzlibrary{decorations.pathreplacing} \usetikzlibrary{arrows} \newenvironment{equationblock}[1]{% \begin{block}{#1} \vspace*{-0.75\baselineskip}\setlength\belowdisplayshortskip{0.25\baselineskip} }{% \end{block} } \newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}} \newcommand{\firstlogo}{img/unito} \newcommand{\thefirstlogo}{% \begin{figure} \centering \includegraphics[width=7em]{\firstlogo} \end{figure} } \newcommand{\secondlogo}{img/infn} \newcommand{\thesecondlogo}{% \begin{figure} \centering \includegraphics[width=7em]{\secondlogo} \end{figure} } \setbeamertemplate{title page}{% \begin{center} {% \usebeamercolor{title} \usebeamerfont{title} \colorbox{bg}{% {\Huge \inserttitle}\xspace } \vspace{0.5em} }\par {% \usebeamercolor{subtitle} \usebeamerfont{subtitle} {\large \it \insertsubtitle}\xspace \vspace{2em} }\par {% \usebeamercolor{author} \usebeamerfont{author} {\Large \insertauthor}\xspace \vspace{1em} }\par {% \begin{columns} \centering \begin{column}{0.3\linewidth} \centering \thefirstlogo \end{column} \begin{column}{0.4\linewidth} \centering \usebeamercolor{institute} \usebeamerfont{institute} \insertinstitute{} \\[1em] \insertdate{} \end{column} \begin{column}{0.3\linewidth} \centering \thesecondlogo \end{column} \end{columns} }\par \end{center} } % \setbeamertemplate{footline}{% % \usebeamerfont{footnote} % \usebeamercolor{footnote} % \hfill % \insertframenumber{}~/~\inserttotalframenumber{} % \hspace{1em} % \vspace{1em} % \par % } % \AtBeginSection[] % {% % {% % \setbeamertemplate{footline}{} % \usebackgroundtemplate{% % \transparent{0.1} % \includegraphics[width=\paperwidth]{img/torino.png} % } % \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} % \begin{frame}[noframenumbering]{\contentsname} % \tableofcontents[currentsection] % \end{frame} % } % } \begin{document} {% \usebackgroundtemplate{% \transparent{0.1} \includegraphics[width=\paperwidth]{img/torino.png} } \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} \begin{frame}[noframenumbering, plain] \titlepage{} \end{frame} } {% % \setbeamertemplate{footline}{} \usebackgroundtemplate{% \transparent{0.1} \includegraphics[width=\paperwidth]{img/torino.png} } \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} \begin{frame}[noframenumbering]{\contentsname} \tableofcontents{} \end{frame} } \section[CFT]{Conformal Symmetry and Geometry of the Worldsheet} \subsection[Preliminary]{Preliminary Concepts and Tools} \begin{frame}{Action Principle and Conformal Symmetry} \begin{equationblock}{Polyakov's Action} \begin{equation*} S_P\qty[ \upgamma,\, X,\, \uppsi ] = -\frac{1}{4\pi} \int\limits_{-\infty}^{+\infty} \dd{\uptau} \int\limits_0^{\ell} \dd{\upsigma} \sqrt{-\det \upgamma}\, \upgamma^{\upalpha \upbeta}\, \qty(% \frac{2}{\upalpha'}\, \partial_{\upalpha} X^{\upmu}\, \partial_{\upbeta} X^{\upnu} + \uppsi^{\upmu}\, \uprho_{\upalpha} \partial_{\upbeta} \uppsi^{\upnu} )\, \upeta_{\upmu\upnu} \end{equation*} \end{equationblock} \pause \begin{columns} \begin{column}[t]{0.5\linewidth} \highlight{Symmetries:} \begin{itemize} \item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$ \item \textbf{2D diff.}\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \gamma_{\uplambda \uprho}$ \item \textbf{Weyl transf.}\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \gamma_{\upalpha \upbeta}$ \end{itemize} \end{column} \pause \begin{column}[t]{0.5\linewidth} \highlight{Conformal symmetry:} \begin{itemize} \item \textbf{vanishing} stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$ \item \textbf{traceless} stress-energy tensor: $\trace{\mathcal{T}} = 0$ \item \textbf{conformal gauge} $\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$ \end{itemize} \end{column} \end{columns} \end{frame} \begin{frame}{Action Principle and Conformal Symmetry} \begin{columns} \begin{column}{0.6\linewidth} \highlight{% Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$: } \begin{equation*} \mathcal{T}( z )\, \Upphi_h( w ) \stackrel{z \to w}{\sim} \frac{h}{(z - w)^2} \Upphi_h( w ) + \frac{1}{z - w} \partial_w \Upphi_h( w ) \end{equation*} \begin{equation*} \mathcal{T}( z )\, \mathcal{T}( w ) \stackrel{z \to w}{\sim} \frac{\frac{c}{2}}{(z - w)^4} + \order{(z - w)^{-2}} \end{equation*} \begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$} \begin{eqnarray*} \qty[ \overset{\scriptscriptstyle(-)}{L}_n,\, \overset{\scriptscriptstyle(-)}{L}_m ] & = & (n - m) \overset{\scriptscriptstyle(-)}{L}_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0} \\ \qty[ L_n,\, \overline{L}_m ] & = & 0 \end{eqnarray*} \end{equationblock} \end{column} \begin{column}{0.4\linewidth} \begin{figure}[h] \centering \resizebox{0.9\columnwidth}{!}{\import{img}{complex_plane.pgf}} \end{figure} \end{column} \end{columns} \end{frame} \begin{frame}{Action Principle and Conformal Symmetry} \highlight{Superstrings in $D$ dimensions:} \begin{equation*} \mathcal{T}( z ) = -\frac{1}{\upalpha'} \partial X( z ) \cdot \partial X( z ) -\frac{1}{2} \uppsi( z ) \cdot \partial \uppsi( z ) \quad \Rightarrow \quad c = \frac{3}{2} D \end{equation*} \pause \begin{block}{$\qty( \uplambda, 0 )~/~\qty( 1 - \uplambda, 0 )$ Ghost System} Introduce anti-commuting $\qty( b,\, c )$ and commuting $\qty( \upbeta,\, \upgamma )$ conformal fields: \begin{equation*} S_{\text{ghost}}\qty[ b,\, c,\, \upbeta,\, \upgamma ] = \frac{1}{2\uppi} \iint \dd{z} \dd{\overline{z}} \qty(% b( z )\, \overline{\partial} c( z ) + \upbeta( z )\, \overline{\partial} \upgamma( z ) ) \end{equation*} where $\uplambda_b = 2$ and $\uplambda_c = -1$, and $\uplambda_{\upbeta} = \frac{3}{2}$ and $\uplambda_{\upgamma} = -\frac{1}{2}$. \end{block} \pause \highlight{Consequence:} \begin{equation*} c_{\text{full}} = c + c_{\text{ghost}} = 0 \quad \Leftrightarrow \quad D = 10. \end{equation*} \end{frame} \begin{frame}{Extra Dimensions and Compactification} \begin{block}{Compactification} \begin{columns} \begin{column}{0.7\linewidth} \begin{equation*} \mathscr{M}^{1,\, 9} = \mathscr{M}^{1,\, 3} \otimes \mathscr{X}_6 \end{equation*} \begin{itemize} \item $\mathscr{X}_6$ is a \textbf{compact} manifold \item $N = 1$ \textbf{supersymmetry} is preserved in 4D \item algebra of $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ in arising \textbf{gauge group} \end{itemize} \end{column} \begin{tikzpicture}[remember picture, overlay] \node[anchor=base] at (3em,-3.75em) {\includegraphics[width=0.3\linewidth]{img/cy}}; \end{tikzpicture} \begin{column}{0.3\linewidth} % \centering % \includegraphics[width=0.9\columnwidth]{img/cy} \end{column} \end{columns} \end{block} \pause \begin{columns} \begin{column}[t]{0.5\linewidth} \highlight{Kähler manifolds} $\qty( M,\, g )$ such that \begin{itemize} \item $\dim\limits_{\mathds{C}} M = m$ \item $\mathrm{Hol}( g ) \subseteq \mathrm{SU}( m )$ \item $g$ is Ricci-flat (equiv.\ $c_1\qty( M )$ vanishes) \end{itemize} \end{column} \pause \begin{column}[t]{0.5\linewidth} Characterised by \highlight{Hodge numbers} \begin{equation*} h^{r,\,s} = \dim\limits_{\mathds{C}} H_{\overline{\partial}}^{r,\,s}\qty( M,\, \mathds{C} ) \end{equation*} counting the no.\ of harmonic $(r,\,s)$-forms. \end{column} \end{columns} \end{frame} \begin{frame}{D-branes and Open Strings} Polyakov's action naturally introduces \highlight{Neumann b.c.:} \begin{equation*} \eval{\partial_{\upsigma} X\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 \end{equation*} satisfied by \textbf{open and closed} strings living in $D$ dimensions s.t.\ $\square X = 0$. \pause \begin{equationblock}{T-duality} \begin{equation*} X( z, \overline{z} ) = X( z ) + \overline{X}( \overline{z} ) \quad \stackrel{T}{\Rightarrow} \quad X( z ) - \overline{X}( \overline{z} ) = Y( z, \overline{z} ) = Y( z ) + \overline{Y}( \overline{z} ) \end{equation*} \end{equationblock} \pause Resulting effect (repeated $p \le D - 1$ times) leads to \highlight{Dirichlet b.c.:} \begin{equation*} \eval{\partial_{\upsigma} X^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 \quad \stackrel{T}{\Rightarrow} \quad \eval{\partial_{\uptau} Y^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 \quad \forall i = 1, 2,\, \dots,\, p \end{equation*} thus \textbf{open strings} can be \textbf{constrained} to \highlight{$D(D - p - 1)$-branes.} \end{frame} \begin{frame}{D-branes and Open Strings} Introducing $Dp$-branes breaks \highlight{$\mathrm{ISO}(1,\, D-1) \rightarrow \mathrm{ISO}( 1, p ) \otimes \mathrm{SO}( D - 1 - p )$.} \pause \begin{equationblock}{Massless Spectrum (\emph{irrep} of \textbf{little group} $\mathrm{SO}( D - 2 )$} \begin{equation*} \mathcal{A}^{\upmu} \quad \leftrightarrow \quad \alpha_{-1}^{\upmu} \ket{0} \qquad \longrightarrow \qquad \begin{tabular}{@{}llll@{}} $\mathcal{A}^A$ & $\leftrightarrow$ & $\alpha_{-1}^A \ket{0},$ & $A = 0,\, 1,\, \dots,\, p$ \\ $\mathcal{A}^a$ & $\leftrightarrow$ & $\alpha_{-1}^a \ket{0},$ & $a = 1,\, 2,\, \dots,\, D - p - 1$ \end{tabular} \end{equation*} \end{equationblock} \pause \begin{columns} \begin{column}{0.5\linewidth} \centering \resizebox{0.55\columnwidth}{!}{\import{img}{chanpaton.pgf}} \end{column} \begin{column}{0.5\linewidth} Introducing \textbf{Chan--Paton factors} $\tensor{\uplambda}{^r_{ij}}$, when branes are \textbf{coincident}: \begin{equation*} \bigoplus\limits_{r = 1}^N \mathrm{U}_r(1) \quad \longrightarrow \quad \mathrm{U}( N ) \end{equation*} \pause \highlight{Build gauge bosons, fermions and scalars.} \end{column} \end{columns} \end{frame} \begin{frame}{Standard Model-like Scenarios} \centering \resizebox{0.8\linewidth}{!}{\import{img}{smbranes.pgf}} \end{frame} \subsection[D-branes at Angles]{D-branes Intersecting at Angles} \begin{frame}{Intersecting D-branes} Consider \highlight{$N$ intersecting $D6$-branes} filling $\mathscr{M}^{1,3}$ and \textbf{embedded in} $\mathds{R}^6$ \begin{equationblock}{Twist Fields Correlators} \begin{equation*} \left\langle \prod\limits_{t = 1}^{N_B} \upsigma_{\mathrm{M}_{(t)}}\qty( x_{(t)} ) \right\rangle = \mathcal{N}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) e^{- S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} )} \end{equation*} \end{equationblock} \pause \begin{tikzpicture}[remember picture, overlay] \draw[line width=4pt, red] (29.5em,3.5em) ellipse (2cm and 1cm); \end{tikzpicture} \pause \begin{columns} \begin{column}{0.5\linewidth} \centering \resizebox{0.5\columnwidth}{!}{\import{img}{branesangles.pgf}} \end{column} \begin{column}{0.5\linewidth} D-branes in \textbf{factorised} internal space: \begin{itemize} \item \textbf{embedded as lines} in $\mathds{R}^2 \times \mathds{R}^2 \times \mathds{R}^2$ \item \textbf{relative rotations} are $\mathrm{SO}(2) \simeq \mathrm{U}(1)$ elements \item $S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) \sim \text{Area}\qty( \qty{ f_{(t)},\, \mathrm{R}_{(t)} }_{1 \le t \le N_B} )$ \end{itemize} \end{column} \end{columns} \end{frame} \begin{frame}{$\mathrm{SO}(4)$ Rotations} Consider \highlight{$\mathds{R}^4 \times \mathds{R}^2$} (focus on $\mathds{R}^4$): \pause \begin{columns} \begin{column}{0.5\linewidth} \centering \resizebox{0.9\columnwidth}{!}{\import{img}{welladapted.pgf}} \end{column} \begin{column}{0.6\linewidth} \begin{equation*} \qty( X_{(t)} )^I = \tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I \quad \text{s.t.} \quad R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )} \end{equation*} \pause that is \begin{equation*} \qty[ R_{(t)} ] = \qty{ R_{(t)} \sim \mathcal{O}_{(t)} R_{(t)} } \end{equation*} \end{column} \end{columns} \end{frame} \begin{frame}{Boundary Conditions} What are the consequences for \highlight{open strings?} \pause \begin{columns} \begin{column}{0.6\linewidth} \begin{itemize} \item consider $u = x + i y = e^{\uptau_e + i \upsigma}$ and $\overline{u} = u^*$ \item let $x_{(t)} < x_{(t-1)}$ be the \textbf{worldsheet intersection points} on \textbf{real axis} \item $X_{(t)}^{1,\, 2}$ are \textbf{Neumann}, $X_{(t)}^{3,\, 4}$ are \textbf{Dirichlet} \end{itemize} \end{column} \begin{column}{0.4\linewidth} \centering \resizebox{0.9\columnwidth}{!}{\import{img}{branchcuts.pgf}} \end{column} \end{columns} \pause \begin{equationblock}{Branch Cuts and Discontinuities for $x \in D_{(t)}$} \begin{equation*} \begin{cases} \partial_u X( x + i 0^+ ) & = U_{(t)} \cdot \partial_{\overline{u}} \overline{X}( x - i 0^+ ) = \qty[% R_{(t)}^{-1} \cdot \qty( \upsigma_3 \otimes \mathds{1}_2 ) \cdot R_{(t)} ] \cdot \partial_{\overline{u}} \overline{X}( x - i 0^+ ) \\ X( x_{(t)},\, x_{(t)} ) & = f_{(t)} \end{cases} \end{equation*} \end{equationblock} \end{frame} \section[Time Divergences]{Cosmological Backgrounds and Divergences} \begin{frame}{BBB} b \end{frame} \section[Deep Learning]{Deep Learning the Geometry of String Theory} \begin{frame}{CCC} c \end{frame} \end{document}