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Action Principle and Conformal Symmetry

Polyakov’s Action

+oo 0
1 2
Sely. X, 4] =~ [ dv [ do/=deryys (a,aax“aaxwwpa%w) Mhev
—o0 0

Symmetries: Conformal symmetry:
Poincaré transf.: X'* = A" XY + c* vanishing stress-energy tensor:  Tg =0
R _ 7\p _ . —
2D diff.: yixﬁ _ (J 1)043 Yap traceless stress energy tensor: trT = 0¢
conformal gauge: Yap = €% Nap

Weyl transf.: Yip = € Yap
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Action Principle and Conformal Symmetry

Polyakov’s Action

+oo 0
1 2
Sely. X, 4] =~ [ dv [ do/=deryys (a,aax“aaxwwpa%w) Mhev
—o0 0

Symmetries: Conformal symmetry:
Poincaré transf.: X'* = A" XY + c* vanishing stress-energy tensor:  Tg =0
. _ Ap _ . —
2D diff.: yixﬁ = (J 1)043 Yap tracfeless Istress erTergy tensor:  tr7T : 0¢
Weyl transf.: Vi = 2V yyp conformal gauge: Yop = €®Nap

Conformal properties fixed by OPEs.
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Superstrings in D dimensions — Virasoro algebra (central extension of de Witt's algebra):

T(z) = —$8X(z) -0X(z) — %tb(z) -oP(z) = c= gD
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Action Principle and Conformal Symmetry

Superstrings in D dimensions — Virasoro algebra (central extension of de Witt's algebra):

T(z) = —iaX(z) -0X(z) — %1])(2) oP(z) = c= §D

o 2

(A,0) / (1 —A,0) Ghost System

Introduce anti-commuting (b, ¢) and commuting (3, y) conformal fields:

Sghost[b, €, B, Y] = % // dzdz (b(z)gc(z) + B(2) gy(z))

Where }\b =2 and }\C = 71, and Aﬁ = % and A’Y = 7% ‘ [Friedan, Martinec, Shenker (1986)]
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Action Principle and Conformal Symmetry

Superstrings in D dimensions — Virasoro algebra (central extension of de Witt's algebra):

T(z) = —éaX(z) -0X(z) — %1])(2) oP(z) = c= gD

(A,0) / (1 —A,0) Ghost System

Introduce anti-commuting (b, ¢) and commuting (3, y) conformal fields:

Sghost[b, €, B, Y] = % // dzdz (b(z)gc(z) + B(2) gy(z))

where Ay =2 and Ac = —1, and Ag = % and A, = f%.

‘ [Friedan, Martinec, Shenker (1986)]

Consequence:
Crull = C + Cghost = 0 =4 D = 10.
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Extra Dimensions and Compactification

Compactification
%1,9 — %1,3 ® %

® %6 is a compact manifold

® |V = 1 supersymmetry preserved in 4D
® algebra of SU(3) ® SU(2) ® U(1) in arising gauge group

[code in Hanson (1994)]
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Extra Dimensions and Compactification

Compactification
%1,9 — %1,3 ® %

® %6 is a compact manifold

® |V = 1 supersymmetry preserved in 4D ‘ .
® algebra of SU(3) ® SU(2) ® U(1) in arising gauge group
Kahler manifolds (M, g) such that:

¢ dmgM=m

® Hol(g) € SU(m)

® Ric(g) =0 (equiv. c;(M) =0)
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Extra Dimensions and Compactification

Compactification
%1,9 — %1,3 ® %

® %6 is a compact manifold

® |V = 1 supersymmetry preserved in 4D \
® algebra of SU(3) ® SU(2) ® U(1) in arising gauge group
Kahler manifolds (M, g) such that: Characterised by Hodge numbers

¢ dmgM=m

® Hol(g) € SU(m)

® Ric(g) =0 (equiv. c;(M) =0) counting the no. of harmonic (r, s)-forms.

h"* = dime HY (M, C)

3/39



Polyakov's action naturally introduces Neumann b.c. for open strings:
o=¢

=0

o=0

9sX(T,0)

satisfied by open and closed strings in D dim. s.t. OX =0 = X(z,2) = X(z) + X(2).
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D-branes and Open Strings

Polyakov's action naturally introduces Neumann b.c. for open strings:

satisfied by open and closed strings in D dim. s.t. OX =0 = X(z,z) = X(z2) + X(2).

T-duality

Dirichlet b.c. consequence of T-duality on p directions:
o=/

X(z) = -X(z) = 0sX'(r,0)] =0 """ §Xi(tr,0) =0
o=0 =0

thus open strings can be constrained to D(D — p — 1)-branes. ‘ [Polchinski (1995, 1096)]

4/39



Introducing Dp-branes breaks ISO(1, D — 1) — ISO(1, p) ® SO(D — 1 — p) :

A¥ — (A%, A%) = U(1) theory in p + 1 dimensions (and scalars)
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Introducing Dp-branes breaks ISO(1, D — 1) — ISO(1, p) ® SO(D — 1 — p) :

A¥ — (A%, A%) = U(1) theory in p + 1 dimensions (and scalars)

[Chan, Paton (1969)]

N
miry =Y Imi ) Ay
i j=1
5/39



00000®0000000000000 000000000 000000000000000

Introducing Dp-branes breaks ISO(1, D — 1) — ISO(1,p) ® SO(D — 1 —p) :

A¥ — (A%, A%) = U(1) theory in p + 1 dimensions (and scalars)

When branes are coincident:

N
Pu.a) — umnw

[Chan, Paton (1969)]

N
)= |m iy J) AT
i, j=1
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D-branes and Open Strings
Introducing Dp-branes breaks ISO(1, D — 1) — ISO(1, p) ® SO(D — 1 — p) :

A¥ — (A%, A%) = U(1) theory in p + 1 dimensions (and scalars)

Chan—Paton Factors
When branes are coincident:

du.a1) — uw)

[Chan, Paton (1969)]

Build gauge bosons, fermions and scalars.

N
i)=Y Imisj) Ay

ihJj=1

5/39



CFT
00000e

Standard Model-like Scenarios

baryonic (Y = %)

@ L L

leptonic (Y =0)

leptonic (Y = —1)

left (Y = —1) right (Y = —1) right (Y = 0)
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Consider N intersecting D6-branes filling .#'3 and embedded in R

I —Se (e X(e)> Mz
<HGM(r) (X(t))> :N<{X(t)7 M(t)}IStSNB)e £l ({ © ()}15:9\'3)
t=1
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Consider N intersecting D6-branes filling .#'3 and embedded in R

I = ) cl X(t), Mt
H OMy (X(f)) N({X(t)’ M(t)}létSNB e = ({ © ()}1StsNB
t=1
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Intersecting D-branes
Consider N intersecting D6-branes filling .#*+* and embedded in R°

Twist Fields Correlators

Ng

) <l X(t), Mt
[T ow, () :N({X(t)’M(f)}IStSNB E“)({() ) P
t=1

X24 T3)

2 o D-branes in factorised internal space:
. o e embedded as lines in R? x R? x R?
o o X ® relative rotations are SO(2) ~ U(1) elements
- mag ) ° SE(cl)({X(t), M(t)}IStSNB) ~ Area({f(t), R(f)}lgtglvg)
/ D(l)gm i \\Lm ‘ [Cremades, Ibanez, Marchesano (2003); Pesando (2012)] ‘
\
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Consider (focus on R*):
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Consider (focus on R*):

Dyey

! !
(X)) = (Reyy) , X7 — gy € R?
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Consider R* x R? (focus on R*):
Dey

(Xw)' = (Rey)', X? — gl € B*
where
SO(4)

R € 50(2) x 02))
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Consider R* x R? (focus on R*):
Dey

! !
(X)) = (Reyy) , X7 — gy € R?

where
S0(4)
R € 50(2) x 02))

that is
[Riy] = {Rwv) ~ OwRivy }

8 /39



What are the consequences for open strings?
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What are the consequences for open strings?

¢ u=x+iy=e"t%and U= u*
. . . D
® X(t) < X(t—1) worldsheet intersection points el
.. P D
[ X(lt’)2 are Neumann, X(3t’)4 are Dirichlet )

D)

D)

D)
‘r—>

X

—— T EEEEERE

X@)

X
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What are the consequences for open strings?

y
° U:X+iy:eTe+i0' and T = u*
. . . D) D)
® X) < X(¢—1) worldsheet intersection points ‘ P
1,2 3,4 .. i Dy D3 Doy
° X(t7) are Neumann, X({) are Dirichlet e I B O N O N B
—  GEEEEKTTTTITTTgTIIeh—
X X@3) X2) X(1)

{auX(x Fi0T) = Upyy - 0aX(x — i0F) = [R(;)l (o3 ®1,) - R(t)] - 95X (x — i0%)
XX, X0) =1y
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8uX (u) if z e X (x(e) + €78.1) = U, 1) 02X (x(e) + 54,

0,X(z) = Z = = ]
) {U(?) oaX(m) if z e 02X (X(e) + €70 ) = Ui, t41) X (X(e) +8-),

where .}fz(t) ={zeC|lmzz0orze Dy} and b+ =n+i0",
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8uX (u) if z e 8, X (xe) + €2715,) X (xe) + 64),

0,X(z) = ’ L = »
) {U(?)GEX(H) if z € 09X (x(r) + €275) 2 X (X +8-),

where .}f;) ={zeC|lmzz0orze Dy} and b+ =n+i0",
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Doubling Trick and Spinor Representation

Doubling Trick

9, X (u) if z e 20 8, X (x(e) + €275.) X (xe) + 64),
0,X(z) = Z n = -
Ug 0sX(T) ifze 80 0 X (x(r) + €75) X (X(e) +0-),

where 74 = {z€ € |Imz200rz€ Dy} and 51 =7+ 0.

Use Pauli matrices ©= (i1, 0):

. (~) (~)
0:X5(2) = 0. X ()1 = 0X(Xe)+ €7 81) = L (¢, 141) X (X(e) +8+) R, 141)

where » )
L (t,t+1) € SU(Q)[_ and 'R(t) t+1) € SU(2)R

10 / 39



Imw
Sum over ‘ all contributions: ‘
= A Br oL R T
- 0:(2) = Y ar () (1 w.)® B (w.) (B (w))
0 1 o I, r=—00
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Sum over all contributions:

+o0 T
- - 0:2(2) = Y e (—w )" (1 w,)® B )(ws) (B (w))

0| 1 I, r=—00

Byl = 2 2 _ mey2f(an bei i w2)
0, n(W2 0 K, —(?E;’_)cn)"zFl(an-l-l—c,,,b,,+1—c,,;2_cn;wz)
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Sequence of the operations:

1. rotation matrix = monodromy matrix
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Sequence of the operations:
1. rotation matrix = monodromy matrix

2. contiguity relations = independent hypergeometrics
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Sequence of the operations:
1. rotation matrix = monodromy matrix
2. contiguity relations = independent hypergeometrics
3. finite action = 2 solutions (no. of d.o.f. is correctly saturated)

12 / 39



Sequence of the operations:
1. rotation matrix = monodromy matrix
2. contiguity relations = independent hypergeometrics
3. finite action = 2 solutions (no. of d.o.f. is correctly saturated)
4. boundary conditions = fix free constants ¢,
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Sequence of the operations:
1. rotation matrix = monodromy matrix
2. contiguity relations = independent hypergeometrics
3. finite action = 2 solutions (no. of d.o.f. is correctly saturated)
4. boundary conditions = fix free constants ¢,

X254 TA3)
\/
fi2)

D

L
o 27t Sge . = Z (E‘g(t) Mt—l) - fif)‘)
on-she! t=1

. Ta2)
fia) /J\ZA oY1) = Area ({fit)}lstSNB>

Day fuy \ -

12 / 39
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The Solution

Sequence of the operations:
1. rotation matrix = monodromy matrix
2. contiguity relations = independent hypergeometrics
3. finite action = 2 solutions (no. of d.o.f. is correctly saturated)
4. boundary conditions = fix free constants ¢,

Physical Interpretation

Diey

—

® strings no longer confined to plane

\/ ® strings form a small bump from the D-brane
® classical action larger than factorised case

12 / 39



P (t,n) =P\ (t,n) forteR

- {IJ)'_(T, 0) = (R(t))ljll):{_(’t, 0) for T € ("f(t), f(t—l))

T+ Ty Te-1)

13 /39
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P (t,n) =P\ (t,n) forteR

- {xp’_(T,O) = (R)', wi(r,0) for T € (), Fe-n))

Tea(6s) = —i g ¥ (E4) S(Es)

¢

H(T) =0 & TE€ (T(t), T(t—l))
P(t) #0

13 /39



Expand on a basis of solutions

Ve +(u) ifze ,}ff)

+oo
1l):l:(Ey:I:) = Z bnlpn(zd:) = \IJ(Z) = {q)E,—(U) ifze ¢%<(?)

n=—o0

14 / 39



Expand on a basis of solutions

Ve 1 (u) if ze Y

+oo
1l):l:(((-cl:) = Z bnlpn(‘i:l:) = \P(Z) = {q)E,—(U) ifze %é?)

n=—o0

W, b)) = omN ‘7{ % WY =5, = <<*\yn(*), \y(*)> — bg)

14 / 39
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Expand on a basis of solutions

Ve +(u) ifze ﬁff)

+oo
1l):l:(((-cl:) = Z bnlbn(‘i:l:) = \P(Z) = {q)E,—(U) ifze %é?)

n=—o0

(W, o) = omN ‘7{ % WY =5, = <<*\yn(*)’ \y(*)> — bg)

Derive the algebra of operators:

2N
[bna bj;q]+ = T <<*lyn*v \P*m>

14 / 39



Consider the case Ry = €™ € U(1):
\l’(X(t) + 6271"6) = /™€ \l’(X(t) + 5)

where
€(t) = X(er1) — () +0(() — (1) — 1) = O(o(eyn) — () — 1)

15 / 39



000000000000000e000 000000000 000000000000000

Consider the case Ry = €™ € U(1):
W(X(t) + 6271"5) = /™€ W(X(t) + 5)

where
€(t) = X(er1) — () +0(() — (1) — 1) = O(o(eyn) — () — 1)

by > o+~
¥ {xo)) =z ] (1- )

t=1 X( t)

Yo (7 {xo}) = 2Tr./\/./\/1y @ ﬁ (1_%)

t=1

_ €
—Ay+—2

15 / 39



Define the vacuum with respect to by:

by |{X(t)}> =0 for n>1

1
b, 5

6>=0 for nZn(t)—l—%—l—
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Define the vacuum with respect to by:

by |{X(t)}> =0 for n>1

1
b, 5

6>=0 for nZn(t)—l—%+

Theories are subject to consistency conditions:
in-annihilators
bn

out-annihilators

b1y | overlap |
. region |

L = n@) + n
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Define the vacuum with respect to by:

by |{X(t)}> =0 for n>1

1
b, 5

6>=0 for nZn(t)—l—%+

Theories are subject to consistency conditions:
in-annihilators
bn

out-annihilators

b1y | overlap |
. region |

L= n@) + iy =0
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Compute the OPEs leading to the stress-energy tensor:

2
nT = m—n N gy + 0 1 Ny + 2
_ _N2 . bn pt . zmn—m 2 (t) 2 - (t) 2
T(Z) 2 W n m;—oo m z [ 2 + ; zZ — X(t) * 2 ; zZ — X(t)

17 / 39
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Compute the OPEs leading to the stress-energy tensor:

)

T > = ) . _—n— n(t)—l—
T(Z)ZTN‘P Z N 4 22 z

n, m=—o0

2
1 XN: ney + 5
2 Z—X(t)

t=1

M
[{x0}) = M({xo}) B HSm(xM)] O

t=1

17 / 39
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Equivalence with Bosonization
g D0} o)) = f oz ol TG ol

i ({x t{xw})

(1)

= (Botixoh =N({ew}) ﬁ (s = x) (1) (102

t=1
t>u
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Equivalence with Bosonization
g D0} o)) = f oz ol TG ol

i ({x t{xw})

(1)

= (Botixoh =N({ew}) ﬁ (3 — ) (1o 1) (10 =8)

t=1
t>u

® (semi-)phenomenological models involve twist and spin fields and open strings

18 / 39
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Spin Fields Amplitudes

Equivalence with Bosonization

it - £ )

(1)

= ({xot{xw}) =N{ew})

(Xw) — X)) (e +~82) (mo+£2)

91 =

VI
o=

® (semi-)phenomenological models involve twist and spin fields and open strings
® general framework for bosonic open strings with intersecting D-branes
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® (semi-)phenomenological models involve twist and spin fields and open strings
® general framework for bosonic open strings with intersecting D-branes
® leading contribution for twist fields
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Spin Fields Amplitudes

Equivalence with Bosonization

(1)

= ({xot{xw}) =N{ew})

(%) — X(r))(

91 =

VI
o=

(semi-)phenomenological models involve twist and spin fields and open strings
general framework for bosonic open strings with intersecting D-branes
leading contribution for twist fields

spin fields as boundary changing operators on defects
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Spin Fields Amplitudes

Equivalence with Bosonization

(1)

= ({xot{xw}) =N{ew})

(Xw) — X)) (e +~82) (mo+£2)

91 =

VI
o=

(semi-)phenomenological models involve twist and spin fields and open strings
general framework for bosonic open strings with intersecting D-branes

leading contribution for twist fields

spin fields as boundary changing operators on defects

alternative framework for amplitudes (extension to (non) Abelian twist/spin fields?)

18 / 39
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string theory = theory of everything = nuclear forces + gravity
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A Few Words on a Theory of Everything

string theory = theory of everything = nuclear forces + gravity

From the phenomenological point of view:

® cosmological implications
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A Few Words on a Theory of Everything
string theory = theory of everything = nuclear forces + gravity
From the phenomenological point of view:

® cosmological implications

® Big Bang(-like) singularities
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A Few Words on a Theory of Everything

string theory = theory of everything = nuclear forces + gravity

From the phenomenological point of view:
® cosmological implications
® Big Bang(-like) singularities
® toy models of space-like singularities

4

time-dependent orbifold models

’ [Craps, Kutasov, Rajesh (2002); Liu, Moore, Seiberg (2002)]

19 / 39
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Orbifolds

Mathematics Physics

manifold M global orbit space M/G
(Lie) group G ® G group of isometries

® stabilizer G, ={g e G| gp=p e M} e fixed points
® orbit Gp={gpe M| g € G} ® additional d.o.f. (twisted states)
® charts ¢ = mo & where: ® singular limits of CY manifolds
e Z:UCR" - U/G
e U/G— M
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Orbifolds

Mathematics Physics

® manifold M ® global orbit space M/G

® (Lie) group G ® G group of isometries

® stabilizer G, ={g€ G |gp=pec M} ® fixed points

® orbit Gp={gpe M| g € G} ® additional d.o.f. (twisted states)

® charts ¢ = mo & where: ® singular limits of CY manifolds
e Z:UCR" - U/G
e t:U/G—> M

Use time-dependent orbifolds to model singularities in time

20 / 39



Use time-dependent orbifolds to model space-like singularities:

divergent closed string aplitudes = gravitational backreaction?
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Time Divergences
ooe

Cosmological Singularities

Use time-dependent orbifolds to model space-like singularities:

divergent closed string aplitudes = gravitational backreaction?

Divergences

Even in simple models (e.g. NBO, more on this later) the 4 tachyons amplitude is divergent at

tree level: g
q
Ay ~ / —(q)
J ldl

g~o0
where
4= ALl

Helosed(q) ~ G and Hopen(q) ~ ql_alHﬁLHZ tr([Ty, T2 [Ts, Taly)

21 /39



Start from (x, x™, x?, X) € .4 P~1:

u =X
7 =g = ds?=—2dudv + (Au)® d2? + 85 dx A
v —x+—%();_)

22 /39



Start from (x, x™, x?, X) € .4 P~1:

=X
z == . = ds’=—2dudv + (Au)® dz* + 5 dx' dx/
v :X+_1(X2)

2 x—

k= —i(2nA)Jy2 = 2m0, = z ~ z + 2mn

22 /39



z = F= = ds’=—2dudv + (Au)® dz* + 5 dx' dx/

k= —i(2nA)Jy2 = 2m0, = z ~ z + 2mn

Scalars on NBO:

i(kevtiz+kR) oi (ki viz+K%)
blu k(U v, 2, ) =TT by g () = —————c

NRNZ 4+
+i 26 Y

—i 2 1
2AZk, v

22 /39



Scalar—photon interactions:

SS(('SE)D = /de vV—g (—ieg“ﬁaa(d)* Opd — 0™ ) + e? g"‘ﬁ;;)c,ca‘3|(1>|2 — % |¢|4)
Q

23 /39



Scalar—photon interactions:
S = [ OxVTE (~ieg ™ an(d” b~ pd" 6) + € g anan 0 — £ [9I)

Q

Terms involved:

+o0o

N
vl _ v e .
I{N}_ /du|Au|u H¢{k+(i)7l(i)7k(i)ar(i)}(u)
+oo N
vl _ 1+v Y ~
‘7{N}_ /du|A||u| ]:[1¢{k+(i)rI(i)ak(i)’r(i)}(u)

—0o0
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CFT Time Divergences
ofe HOO00e000

Scalar QED Interactions

Scalar—photon interactions:

SqEb = / aPx /=g (~ieg™Pan(¢0" b — Op " §) + & g*P aqap o)

Q

Terms involved:

+o0

R RIS | IR

— 00

v 1+v
TH) = /duiAnu\+ H% o}

210l

most terms do not converge due to isolated zeros (/.y = 0) and cannot be recovered even
with a distributional interpretions due to the term o u™! in the exponentatial
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String and Field Theory

So far:

¢ field theory presents divergences (even sSQED — eikonal?)
® divergences are not (only) gravitational

¢ vanishing volume in phase space of the compact direction is responsible for the
divergence

What about string theory?

Massive String States

i

Voo!

i

Vi(x: k, S, &) =: ( £ OuX(x x) + (m

2
) Sap O X*(x, x)0XP (x, x)> efk-X(x) .
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String and Field Theory

So far:

¢ field theory presents divergences (even sSQED — eikonal?)
® divergences are not (only) gravitational

¢ vanishing volume in phase space of the compact direction is responsible for the
divergence

What about string theory?

Massive String States

i

Voo!

i

V2o

2
Vin(x; k, S, a)—:( £ 03X (x, x)+< ) Seup Ox X (x, x)0xXP (x, x))e’*‘x(“*

string theory cannot do better than field theory (EFT) if the latter does not exist (even a
Wilson line around z does not prevent such behaviour)
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Introduce the generalised NBO:

u =X
2 =4 .
1 [ 3 = K= —27[I(A2J+2 + A3J+3) = 270,
W= (h A
1 2 2
v o=t (00 ()
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Introduce the generalised NBO:

u =X
2 =4 .
1 [ 3 = K= —27[I(A2J+2 + A3J+3) = 270,
W= (h A
1 2 2
v o=t (00 ()

- l+2 1—p)2 E2+r
1 1 i 1[(,,) (p)]_llllk )

e 8kiu | AZ A2 +
21/ 2m)P A Asky | Y]

i poini (0) =
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On the Divergences and Their Nature

e divergences are present in SQED and open string sector

® singularities = massive states are no longer spectators

® vanishing volume (compact orbifold directions) = particles “cannot escape”

® non compact orbifold directions = interpretation of amplitudes as distributions

® issue not restricted to NBO/GNBO but also BO, null brane, etc. (it is a general issues
connected to the geometry of the underlying space)

spacetime singularities are hidden into contact terms and interactions with massive states

(the gravitational eikonal deals with massless interactions)
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Conformal Symmetry and Geometry of the Worldsheet
Preliminary Concepts and Tools

D-branes Intersecting at Angles
Fermions and Point-like Defect CFT

Cosmological Backgrounds and Divergences
Orbifolds and Cosmolaegical Toy Models
Null Boost Orbifold

Deep Learning the Geometry of String Theory
Machine Learning and Deep Learning
Machine Learning for String Theory
Al Implementations for Geometry and Strings



Focus on Calabi-Yau 3-folds:

h0,0 — h3,0 =1
_ hr:0 =0 if r#3
A — dimg HgS(M, C) = hros _ p3-r3-s
hl’l, h2’1 cIN
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The Simplest Calabi—Yau

Focus on Calabi-Yau 3-folds:

H0:0 = hp30 =1
. . B0 =0 if r#3
RS = dlm@ HES(M, (D) = hres — h3—r.,3—s7é
At P2l e N

Complete Intersection Calabi—Yau Manifolds
Intersection of hypersurfaces in
A=P" x ... x P"™

where
P pa(ZO,...,Zn) ZP/IM/QZI‘...ZIEZ
' pa(7\Z°, ...,7\Z”) :?\apa(ZO,...,Z”)

‘ [Green, Hiibsch (1987); Hiibsch (1992)]
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CICY can be generalised to m projective spaces and k equations. The problem is thus

mapped to:
X /RS — N

— ALY o pZ1
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mapped to:
X /RS — N

hl, 1 or h2, 1

28 / 39



0000000000000000000 000000000 OO®000000000000

CICY can be generalised to m projective spaces and k equations. The problem is thus

mapped to:
X /RS — N

What is £27?

AB(M) — Zn(M; w) s.t. nll)no]o |%(M) — Z,(M; w)| =0

28 / 39
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exchange analytical solution with optimisation problem

use various algorithms and exploit large datasets

learn a representation rather than a solution

knowledge from computer science, mathematics and physics to solve problems

provide in-depth data analysis of the datasets
0 2 4 6 8 10 12 14 16 18 10 20 30 40 50 60 70 80 90 100
i

"
2

2

count
-
3

count

-
3

o
3

29 / 39



e 7890 CICY manifolds (full dataset)

30 /39



e 7890 CICY manifolds (full dataset)
® dataset pruning: no product spaces, no “very far" outliers (reduction of 0.49%)

30 /39



e 7890 CICY manifolds (full dataset)

® dataset pruning: no product spaces, no “very far" outliers (reduction of 0.49%)
e ht1 ¢ 1, 16] and h* 1! € [15, 86]

30 /39



e 7890 CICY manifolds (full dataset)
® dataset pruning: no product spaces, no “very far" outliers (reduction of 0.49%)

e ht:1 €1, 16] and h*! € [15, 86]
® 30% training, 10% validation, 10% test
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7890 CICY manifolds (full dataset)

dataset pruning: no product spaces, no “very far’ outliers (reduction of 0.49%)
ht1 € [1, 16] and h*1 € [15, 86]

80% training, 10% validation, 10% test

choose regression, but evaluate using accuracy (round the result)

18

16 . ‘. i 3

14 0 .

12

o N & o ®

. 0 .

full clean full clean
Type of distribution Type of distribution
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Machine Learning pipeline:

exploratory data analysis — feature selection — Hodge numbers
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Machine Learning pipeline:
exploratory data analysis — feature selection — Hodge numbers

Correlation Matrix of the Scalar Features Importance of the Scalar Features (w/ matrix)

e
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CFT Time Divergences

A Word on PCA

What is PCA for a X € R"™<P?

® project data onto a lower
dimensional space where
variance is maximised

® cquivalently compute the
eigenvectors of XX or the
singular values of X

® isolate the signal from the
background

® case the machine learning job of
finding a better representation of
the input

Deep Learning
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A Word on PCA

What is PCA for a X € R"™P?
® project data onto a lower 4
dimensional space where 4
variance is maximised H P
® cquivalently compute the L[

neie, paio’

eigenvectors Of XXT or the Singular Value Decomp. - Variance Retained per Component Singular Value Decomp. - Cumulative Variance Retained

singular values of X . e 59,05 of variance retained
® isolate the signal from the .

:

background § Sos
® case the machine learning job of

finding a better representation of ooz g

the input 0.00 81 components

o s m s w0 s w0 s o s m s w0 s o ws
component of the configuration matrix component of the configuration matrix
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Configuration Matrix Only

== h*2 (30% ratio)
m—h1* (80% ratio)
= h? (30% ratio)
m— h21 (80% ratio)

08

61% 61%
06 57%
>
K 51%
Sos a9
04
03
02
) .l .l I
00
N
s s
« e“)@a’
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Machine Learning Results
Configuration Matrix Only Best Training Set

I I‘%

10 10

h** (30% ratio) h*:* (30% ratio)

m—h1* (80% ratio) 1! (80% ratio)

h?* (30% ratio) h?* (30% ratio)

09 mm h21 (80% ratio) 09 mm h21 (80% ratio)
08 08
07 07

63% _64%

06 06

accuracy
accuracy

04 04
03 03
0.2 0.2 19%
) ) I
00 00
& &
« \@ o @“

B
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Artificial Intelligence and Neural Networks

¢ use gradient descent to optimise weights

learn highly non linear representations of the input

can be “large” to have enough parameters

® can be “deep’ to to learn complicated functions

Layers

fully connected: ¢ (al) . Wil + pilt))
convolutional: ¢ (a5 Wil 4 pliiy)

Non linearity ensured by:

¢(z) = ReLU(z) = max (0, z)

hidden layers

(ReLU activation)

=
=
ol

=<

IBW

) Y
PPl
(e
DA
PR

S
CNCY
NN

N

s

A
e

25

=

I“V}iii‘
7
Al

S
=

I

P
v{vr4

[rendition of the neural network in Bull et al. (2018)] ‘
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Convolutional Neural Networks

Why convolutional?

® retain spacial awareness

hi1=6.hn=26

01 2 3 45 6 7 8 910

11

12 13

14

10

0.0
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Convolutional Neural Networks

Why convolutional?

1.0
hi1=6.hn=26

(o]

® retain spacial awareness 1 038
® smaller no. of parameters i

(=2 x 10°% vs. &~ 2 x 10°) ' 06
5
6

7 0.4
8
9

10 02
11

01 2 3 4 5 6 7 8 9 1011 12 13 14
0.0
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Convolutional Neural Networks

Why convolutional?

10
hi1=6.hn=26
0
® retain spacial awareness 1 038
2
® smaller no. of parameters .
(=2 x 10° vs. &~ 2 x 10°) ‘ 06
® weights are shared Z
7 0.4
8
9
10 0.2
11
01 2 3 4 5 6 7 8 910111213 14
0.0
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Convolutional Neural Networks

Why convolutional?

® retain spacial awareness

® smaller no. of parameters
(=2 x 10° vs. &~ 2 x 10°)

® weights are shared

CNN can isolate “defining
features”
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Convolutional Neural Networks

Why convolutional?

retain spacial awareness

smaller no. of parameters
(=2 x 10° vs. &~ 2 x 10°)

weights are shared

CNN can isolate “defining
features”

find patterns as in computer
vision

Time Divergences
000000000

180012 x 15

100012 x 1

convolutional layers (5 x 5
kernel, ReLU activation)

———/ "\

Deep Learning

0000000000 e0000
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Inception Neural Networks

Recent development by Google's deep learning teams led to:
® neural networks with better generalisation properties
® smaller networks (both parameters and depth)
e different concurrent kernels (e.g. one over equations one over coordinates)
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Inception Neural Networks

Recent development by Google's deep learning teams led to:
® neural networks with better generalisation properties
® smaller networks (both parameters and depth)
e different concurrent kernels (e.g. one over equations one over coordinates)

concatenation module 1 concatenation module 2 concatenation module 3
hor: 1 x 15 kernel hor: 1 x 15 kernel hor: 1 x 15 kernel
ver: 12 x 1 kernel ver: 12 x 1 kernel ver: 12 x 1 kernel
(ReLU activation) (ReLU activation) (ReLU activation)

) 7 Y
& /4

nput layer

L L L 37 /39
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Deep Learning Results and Generalisation Properties

Best Training Set

B2 (30% ratio)
-1} (80% ratio)
— 121 (30% ratio)
=421 (80% ratio)
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$ K 5
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o
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0.2

04 05 06
training ratio
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—e— h11 (train)
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—e- h21 (train)
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04 05 06
training ratio

0.7 0.8 0.9
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® reliable predictive method
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A Few Comments and Future Directions

Why deep learning in physics?

reliable predictive method (provided good data analysis)
reliable source of inspiration (provided good data analysis)
reliable generalisation method (provided good data analysis)
CNNs are powerful tools (this is the first time in physics!)

interdisciplinary approach = win-win situation!

What now?

representation learning = what is the best way to represent CICYs?

study invariances = invariances should not influence the result (graph representations?)
higher dimensions = what about CICY 4-folds?

geometric deep learning = explain the geometry of the “Al" behind deep learning!

reinforcement learning = give the rules, not the result!
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