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Symmetries:
® Poincaré transf. X'* = A* XY + M
* 2D diff. v = (171) . Vo
* Weyl transf. v, ; = e yqp
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Action Principle and Conformal Symmetry

Polyakov’s Action

+o0 0
1 2
Sely, X, ¥] = “an / dT/dU —detyy*P (oc’ X 0 XY +11’Hpocaf51bv> Mpv
—00 0

Symmetries: Conformal symmetry:
e Poincaré transf. X'* = /\“ XV + M ¢ vanishing stress-energy tensor: Tog =0
e 2D diff. Voqs - (] 1) y)\p ® traceless stress-energy tensor: tr’7 =0

= e®
* Weyl transf. v, = e2wy b e conformal gauge vop = e® Nap
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Superstrings in D dimensions:

T(z) = —$8X(z) -0X(z) — %tb(z) -oP(z) = c= gD
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Action Principle and Conformal Symmetry
Superstrings in D dimensions:

T(2) =~ 0X(2) - 9X(2) - J(z) - 00(z) = =D

(A,0) / (1 —A,0) Ghost System

Introduce anti-commuting (b, ¢) and commuting (3, y) conformal fields:

Suvalb €, BV = o [ [ 4242 (b(2)e(2) + B2) B (2)

where Ay =2 and Ac = —1, and Ag = % and A, = f%.
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Action Principle and Conformal Symmetry

Superstrings in D dimensions:

T(2) =~ 0X(2) - 9X(2) - J(z) - 00(z) = =D
(A,0) / (1 —A,0) Ghost System

Introduce anti-commuting (b, ¢) and commuting (3, y) conformal fields:

Suvalb €, BV = o [ [ 4242 (b(2)e(2) + B2) B (2)
where Ay =2 and Ac = —1, and Ag =

3 __1
5 and Ay, = —3.

Consequence:

Gl = C+ CGghost =0 & D =10.
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Extra Dimensions and Compactification

Compactification
%1,9 _ %1,3 ® %—6

® %6 is a compact manifold
® /N = 1 supersymmetry is preserved in 4D
® algebra of SU(3) ® SU(2) ® U(1) in arising gauge group
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Compactification
%1,9 _ %1,3 ® %—6

® %6 is a compact manifold
® /N = 1 supersymmetry is preserved in 4D
® algebra of SU(3) ® SU(2) ® U(1) in arising gauge group

K&hler manifolds (M, g) such that
® dimgM=m
* Hol(g) C SU(m)
® g is Ricci-flat (equiv. ¢1(M) vanishes)
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Extra Dimensions and Compactification

Compactification
%1,9 _ %1,3 ® %—6

® %6 is a compact manifold
® /N = 1 supersymmetry is preserved in 4D
® algebra of SU(3) ® SU(2) ® U(1) in arising gauge group

K&hler manifolds (M, g) such that Characterised by Hodge numbers
® dimgM=m
* Hol(g) C SU(m)

* g is Ricci-flat (equiv. c;(M) vanishes) counting the no. of harmonic (r, s)-forms.

h"* = dimg H2*(M, C)

3/39



Polyakov's action naturally introduces Neumann b.c.:

o=/{
=0

o=0

0sX(T,0)

satisfied by open and closed strings living in D dimensions s.t. (0X = 0.
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Polyakov's action naturally introduces Neumann b.c.:

o=/{
=0

o=0

0sX(T,0)

satisfied by open and closed strings living in D dimensions s.t. (0X = 0.

X(2,2)=X(2) + X(Z) = X(z)-X@E@)=Y(232) =Y()+Y(E)
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D-branes and Open Strings

Polyakov's action naturally introduces Neumann b.c.:

o=/{
0sX(T,0) =0
o=0

satisfied by open and closed strings living in D dimensions s.t. (0X = 0.
T-duality
X(z,2) =X(2)+X(2Z) = Xz -X(2)=Y(z2) =Y +Y(?)

Resulting effect (repeated p < D — 1 times) leads to Dirichlet b.c.:

o=/ o=¢{

0eXi(r,0)| =0 = 8. Yi(ro)| =0 Vi=12...p

thus open strings can be constrained to D(D — p — 1)-branes.
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Introducing Dp-branes breaks ‘ ISO(1, D — 1) = ISO(1, p) ® SO(D — 1 — p). ‘
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Introducing Dp-branes breaks ISO(1, D — 1) — ISO(1, p) ® SO(D — 1 — p).

AA o oA 0),
A2 & a?|0),

AY oM |0) —
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Introducing Dp-branes breaks ISO(1, D — 1) — ISO(1, p) ® SO(D — 1 — p).

AA o oA 0),
a Aa s 0(3_1 |0> )
Introducing Chan—Paton factors A", when
branes are coincident:

,‘jy

N
Pu.q) — umnw
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D-branes and Open Strings

Introducing Dp-branes breaks ISO(1, D — 1) — ISO(1, p) ® SO(D — 1 — p).

Massless Spectrum (irrep of little group SO(D — 2)

A & A0y, A=0,1,...,p
a=1

1
T m
AT e eL|0) = e o a0, 2 .. D—-p—1

when

Introducing Chan—Paton factors A"
branes are coincident:

,_'j)

N
Pdu.a) — uw)
r=1

Build gauge bosons, fermions and scalars.
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Standard Model-like Scenarios

baryonic (Y = 3)
<Zi> j ] ;H RLCIR

leptonic (Y =0)

leptonic (Y = —1)

left (Y =—3) right (Y = —1) right (Y = 0)

6/39



Consider N intersecting D6-branes filling .#*3 and embedded in R®

e —SE(d X(t)s M(e
<H oMy (X(t>)> = N ({x0 Mo hrcrens )€ (b
t=1
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Consider N intersecting D6-branes filling .#*3 and embedded in R®

e —SE(d {Xt 7Mt}
[T o (x9) ) = N ({59 Mo }rceens 6 (0 Mo,
t=1
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Intersecting D-branes
Consider N intersecting D6-branes filling .#*3 and embedded in R®
Twist Fields Correlators
Ng
=Seen ( {20 Mo}, .,
<H OMy) (X(t))> = N({X(t)v M(t)}1gthB ( st
t=1
S D-branes in factorised internal space:
o ® embedded as lines in R? x R? x R?
D;; D) ® relative rotations are SO(2) ~ U(1)
o elements
o * SE(d)({X(t), M(t)}lgthB) ~
% 8(1)) \i"(l)
Dy foy \\ L Area({f(t), R(t)}lgthB)
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Consider (focus on R*):
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Consider (focus on R*):

Dyey

1 I
(Xw) = (Rw) , X7 — gl
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Consider R* x R? (focus on R*):
Dey

1 I
(Xw) = (Rw) , X7 — gl
where
SO(4)

R € 50(2) x 02))
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Consider R* x R? (focus on R*):
Dey

1 I
(Xw) = (Rw) , X7 — gl

where
S0(4)
R € 50(2) x 02))

that is
[Riy] = {Rwv) ~ OwRivy }
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What are the consequences for open strings?
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® consider u=x+iy=ce

® let x(t) < X(t—1) be the worldsheet intersection
points on real axis

are Neumann, X(31_:)4 are Dirichlet

D)

—

Dy

What are the consequences for open strings?

D)
‘r—>

X

—— T EEEEERE

X@)

X

9/39



Time Divergences

Boundary Conditions

What are the consequences for open strings?

y
e consider u = x + iy = %% and T = u*
® let x(+) < X(t—1) be the worldsheet intersection m /ﬁ
points on real axis ! Diay D) D2y
° X(lt’)2 are Neumann, X(3t’)4 are Dirichlet —- Tﬁ:::::r:v—f
X(4) X(3) X(2) X(1)

Branch Cuts and Discontinuities for x € D,

{8,_,X(X + i0+) = U(t) . &UY(X = i0+) = R(_t)l (o3 ®@13) - R(t) &UY(X = i0+)
XX, X)) = fo
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8uX (u) if z e X (x(e) + €78.1) = U, 1) 02X (x(e) + 54,

0,X(z) = Z = = ]
) {U(?) oaX(m) if z e 02X (X(e) + €70 ) = Ui, t41) X (X(e) +8-),

where .}fz(t) ={zeC|lmzz0orze Dy} and b+ =n+i0",
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8uX (u) if z e 8, X (xe) + €2715,) X (xe) + 64),

0,X(z) = ’ L = »
) {U(?)GEX(H) if z € 09X (x(r) + €275) 2 X (X +8-),

where .}f;) ={zeC|lmzz0orze Dy} and b+ =n+i0",
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Doubling Trick and Spinor Representation

Doubling Trick

9, X (u) if z e 20 8, X (x(e) + €275.) X (xe) + 64),
0,X(z) = Z n = -
Ug 0sX(T) ifze 80 0 X (x(r) + €75) X (X(e) +0-),

where 74 = {z€ € |Imz200rz€ Dy} and 51 =7+ 0.

Use Pauli matrices ©= (i1, 0):

. (~) (~)
0:X5(2) = 0. X ()1 = 0X(Xe)+ €7 81) = L (¢, 141) X (X(e) +8+) R, 141)

where » )
L (t,t+1) € SU(Q)[_ and 'R(t) t+1) € SU(2)R

10 / 39
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Sum over ‘ all contributions: ‘
-
. - 0.(2) = Y e (~w. )™ (1 - w.)™ B )(w,) (B (ws))
0 1 o0 Ir
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Sum over all contributions:

0:2(2) = 3 e (~wa) (1~ w2)® B () (BY(wn))

0| 7 £ Ir

Bo n(ws) = (L D ey 2 F1 (an, bi cni w2)
0,mM\®z) = 1 ¢ K, (F$Z)c)_2F1(a"+1 Cn, bp+1—cCn; 2—cp; wz)
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Operations sequence:

1. rotation matrix = monodromy matrix
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2. contiguity relations = independent hypergeometrics
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Operations sequence:

1. rotation matrix = monodromy matrix

2. contiguity relations = independent hypergeometrics

3. finite action = 2 solutions (no. of d.o.f. is correctly saturated)
4

. boundary conditions = fix free constants ¢,
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Operations sequence:

1. rotation matrix = monodromy matrix

2. contiguity relations = independent hypergeometrics

3. finite action = 2 solutions (no. of d.o.f. is correctly saturated)
4. boundary conditions = fix free constants ¢,

X2 TQ3)
\/
fi2)
P o s : 3 o1y — Fio|
. £6) R4 g (t—1) — 1)
27'(0(’ (®)
on-shell
“J&Z
&3)// 8() 7r0‘(1) = Area ({ fit) })
Day fiy \ o
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Operations sequence:

1. rotation matrix = monodromy matrix

2. contiguity relations = independent hypergeometrics

3. finite action = 2 solutions (no. of d.o.f. is correctly saturated)
4. boundary conditions = fix free constants ¢,
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- WL(r,0) = (Ry) ,wi(r,0) for T € (%, Fe1)
A P (t,m) =—-Pl(t,n) forteR

Tern) Ty Te-1)

13 /39



000000000000 0e00000 000000000 000000000000000

- WL(r,0) = (Ry) ,wi(r,0) for T € (%, Fe1)
P (t,m) =—-Pl(t,n) forteR

H(t) =0ete (T(e)> T(e-1))

T <
E:I:(E,:I:)z—I'le)i,l(a:t)all)g:(f,:t) = {P(r) o

13 /39



Expand on a basis of solutions

Ve +(u) ifze ﬁff)

+oo
PYo(Ex) = Y baba(Es) =  ¥Y(2)= {d)E,_(U) if 7 ¢

n=—o0
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Expand on a basis of solutions

Ve 1 (u) if ze Y

+oo
PYo(Ex) = Y baba(Es) =  ¥Y(2)= {d)E,_(U) if 7 ¢

n=—o0

o) =20 f 22 =00 (00,90 =4
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Expand on a basis of solutions

Ve +(u) ifze ,}ff)

+oo
PYo(Ex) = Y baba(Es) =  ¥Y(2)= {d)E,_(U) if 7 ¢

n=—o0

dz
& = —C My * = ap (6wl — ph)
<< 1I)n7 11-”") 27['/\/ f 27t l"Vn l"ym 6",m = << ‘yn 711] > bn
Derive the algebra of operators:
N v e
[bna bj;y]_,_ = T << v, 7wm>
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Consider the case Ry = €™ € U(1):
\l’(X(t) + 6271"6) = /™€ \l’(X(t) + 5)

where
€(t) = X(er1) — () +0(() — (1) — 1) = O(o(eyn) — () — 1)
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Consider the case Ry = €™ € U(1):
W(X(t) + 6271"5) = /™€ W(X(t) + 5)

where
€(t) = X(er1) — () +0(() — (1) — 1) = O(o(eyn) — () — 1)

by > o+~
¥ {xo)) =z ] (1- )

t=1 X( t)

Yo (7 {xo}) = 2Tr./\/./\/1y @ ﬁ (1_%)

t=1

_ €
—Ay+—2

15 / 39



Define the vacuum with respect to b,:

by |[{xt)}) =0 for n>1

b, 6>:0 for nzn(t)—i—ﬁ—i—

1
2 2
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Define the vacuum with respect to b,:

b {x0}) =0 for
b, 6> =0 for

Theories are subject to consistency conditions:

L = ngy + ny

n>1

€ 1
nZ"(t)+%+§

out-annihilators

in-annihilators

bii1p

| overlap
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Define the vacuum with respect to b,:

b {x0}) =0 for
b, 6> =0 for

Theories are subject to consistency conditions:

L = ng) + Ay =0

n>1

€ 1
nZ"(t)+%+§

out-annihilators

in-annihilators

bii1p

| overlap

16 / 39



Compute the OPEs leading to the stress-energy tensor:

+oo
T(z)= NT NS Z cbpbl zTTT™ l

n, m=—o0

n(t) +
2 Z zZ— X(t)

17 / 39
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Compute the OPEs leading to the stress-energy tensor:

+oo
T(z):g/\/\f, Z c b, bl zT"m l

n, m=—o0

ne + 5
22 Z—X(t)

M
{0 }) =N ({0} R H5<t)(X(t>)] O

t=1

17 / 39
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Equivalence with Bosonization
g D0} o)) = f oz ol TG ol

i ({x t{xw})

(1)

= (Botixoh =N({ew}) ﬁ (s = x) (1) (102

t=1
t>u
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Equivalence with Bosonization
g D0} o)) = f oz ol TG ol

i ({x t{xw})

(1)

= (Botixoh =N({ew}) ﬁ (3 — ) (1o 1) (10 =8)

t=1
t>u

® (semi-)phenomenological models involve twist and spin fields and open strings
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Spin Fields Amplitudes

Equivalence with Bosonization

it - £ )

(1)

= ({xot{xw}) =N{ew})

(Xw) — X)) (e +~82) (mo+£2)

91 =

VI
o=

® (semi-)phenomenological models involve twist and spin fields and open strings
® general framework for bosonic open strings with intersecting D-branes
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VI
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® (semi-)phenomenological models involve twist and spin fields and open strings
® general framework for bosonic open strings with intersecting D-branes
® leading contribution for twist fields
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Equivalence with Bosonization

(1)

= ({xot{xw}) =N{ew})

(%) — X(r))(

91 =

VI
o=

(semi-)phenomenological models involve twist and spin fields and open strings
general framework for bosonic open strings with intersecting D-branes
leading contribution for twist fields

spin fields as boundary changing operators on defects
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Spin Fields Amplitudes

Equivalence with Bosonization

(1)

= ({xot{xw}) =N{ew})

(Xw) — X)) (e +~82) (mo+£2)

91 =

VI
o=

(semi-)phenomenological models involve twist and spin fields and open strings
general framework for bosonic open strings with intersecting D-branes

leading contribution for twist fields

spin fields as boundary changing operators on defects

alternative framework for amplitudes (extension to (non) Abelian twist/spin fields?)
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string theory = theory of everything = nuclear forces + gravity
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A Few Words on a Theory of Everything

string theory = theory of everything = nuclear forces + gravity

From the phenomenological point of view:

® cosmological implications
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A Few Words on a Theory of Everything

string theory = theory of everything = nuclear forces + gravity

From the phenomenological point of view:
® cosmological implications

® Big Bang(-like) singularities

® toy models of space-like singularities

¢

time-dependent orbifold models

19 / 39



Mathematics
manifold M Physics

® (Lie) group G ® global orbit space M/G

® stabilizer G, = {g € G |gp=p € M} = ® G group of isometries

® orbit Gp={gpe M| ge G} ® fixed points

® charts ¢ = mo &2 where: ® additional d.o.f. (twisted states)
s Z:UCR"—= U/G ® singular limits of CY manifolds
e 1 U/G— M
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Orbifolds

Mathematics

® manifold M Physics
e (Lie) group G ® global orbit space M/G
e stabilizer G, = {g € G| gp=p € M} = ® G group of isometries
® orbit Gp={gpe M| ge G} ¢ fixed points

[ ]

additional d.o.f. (twisted states)
singular limits of CY manifolds

time-dependent orbifolds

® charts ¢ = mo & where:
* Z:UCR" = U/G
e U/G— M
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Use time-dependent orbifolds to model space-like singularities:

divergent closed string aplitudes = gravitational backreaction?
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Time Divergences
ooe

Cosmological Singularities

Use time-dependent orbifolds to model space-like singularities:

divergent closed string aplitudes = gravitational backreaction?

Divergences

Even in simple models (e.g. NBO, more on this later) the 4 tachyons amplitude is divergent at

tree level: g
q
Ay ~ / —(q)
J ldl

g~o0
where
4= ALl

Helosed(q) ~ G and Hopen(q) ~ ql_alHﬁLHZ tr([Ty, T2 [Ts, Taly)

21 /39



Start from (x, x™, x?, X) € .4 P~1:

z =3F= = ds®’ = —2dudv + (Au)® dz% + 8; dx' dx!
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Start from (x, x™, x?, X) € .4 P~1:
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Start from (x, x™, x?, X) € .4 P~1:

z =3F= = ds®’ = —2dudv + (Au)® dz% + 8; dx' dx!

k= —i(2nA)Jy2 = 2m0, = z ~ z + 2mn

Consider scalar QED:

i(kyvtlz+R-%) T gl (ksv+iz+k-x)
Opp iy (v 2. 0) = ETEED g a () = e

72
k +ru

N
IzAikJr u+’ 2ky

22 /39



Scalar—photon interactions:

Ss(gé)o = /de vV—g (—ieg"‘ﬁaa(d)* Opgd — g™ d) + e? g"“g’acxa(3|c]>|2 — % |¢|4)

o
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Scalar—photon interactions:
Siqeb = / dPx /=g (~ieg™Pau(¢” Opb — 00" &) + € g P anap 0 — & 1[*)

o

Terms involved:

—+o0

N
Im} - /du|Au|uv1_-[¢{k+(i)vl(i)7I_(.(i)”(")}(u)
e i=1
+oo N
[v] _ 1+v e .
J{N} - /du|A||u| 1_[1¢{k+(i>7’<i)vk(f)af(i)}(u)
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ofe HOO00e000

Scalar QED Interactions

Scalar—photon interactions:

S&QED—/deF(—:eg“Bam Do — Dp " 0) + € g*Pacaglof — & o)

Terms involved:

—+o00

N
[v] T
Liny = /dU|AU\U Hd’{h(m/u)vl?wf(f)}(u)
e i=1
+o0
v 1+
7hh = [ dwlalle VH% i} ()

most terms do not converge and cannot be recovered even with a distributional
interpretions due to the term oc u™! in the exponentatial

23 /39



So far:
¢ field theory presents divergences
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So far:
¢ field theory presents divergences
® issues are still present in SQED (eikonal?)

® divergences are not (only) gravitational

i

V2!

i

V2!

2
Viu(x; k, S, &) =: ( £-02X(x, x) + ( ) Sap O X*(x, x)0XP (x, x)) lbelee ) -
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Time Divergences
[e]e] le]e}

String and Field Theory

So far:
e field theory presents divergences
® issues are still present in SQED (eikonal?)
® divergences are not (only) gravitational

Massive String States

i

V2o

i

V2o!

2
Viu(x; k, S, &) =: ( & - an(x, x) + < > SapOxX*(x, x)(?XXﬁ(x, X)) apeodes i)

string theory cannot do better than field theory (EFT) if the latter does not exist (even a
Wilson line around z does not prevent such behaviour)
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Introduce the generalised NBO:
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1 [ 3 = K= —27[I(A2J+2 + A3J+3) = 270,
W= (h A
1 2 2
v o=t (00 ()

25 / 39



Introduce the generalised NBO:

u =X
2 =4 .
1 [ 3 = K= —27[I(A2J+2 + A3J+3) = 270,
W= (h A
1 2 2
v o=t (00 ()

- l+2 1—p)2 E2+r
1 1 i 1[(,,) (p)]_llllk )

e 8kiu | AZ A2 +
21/ 2m)P A Asky | Y]

i poini (0) =
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On the Divergences and Their Nature

e divergences are present in SQED and open string sector

® singularities = massive states are no longer spectators

® vanishing volume (compact orbifold directions) = particles “cannot escape”

® non compact orbifold directions = interpretation of amplitudes as distributions

® issue not restricted to NBO/GNBO but also BO, null brane, etc. (it is a general issues
connected to the geometry of the underlying space)

spacetime singularities are hidden into contact terms and interactions with massive states

(the gravitational eikonal deals with massless interactions)
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Conformal Symmetry and Geometry of the Worldsheet
Preliminary Concepts and Tools

D-branes Intersecting at Angles
Fermions and Point-like Defect CFT

Cosmological Backgrounds and Divergences
Orbifolds and Cosmolegical Toy Models
Null Boost Orbifold

Deep Learning the Geometry of String Theory
Machine Learning and Deep Learning
Machine Learning for String Theory
Al Implementations for Geometry and Strings
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Focus on Calabi-Yau 3-folds:

10,0 =p30 =1
- hr,o = 0 if r 7é 3
S — dime HgS(M’ C) = s — p3-r3-s
A1 p%t e N

Intersection of hypersurfaces in
J4:: Eﬂh X e X:an

where
pa(ZO, ...,Z") =P,1.,,,QZ’1...Z’5=0
pa(7\Z°, ce 7\Z") = ?\"’pa(ZO, R Z")
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CICY can be generalised to m projective spaces and k equations. The problem is thus

mapped to:
R Zmxk — N

n. 1 1
Pm a0 a3
—  hb1 oor pl

n m m
P | a7 ... aj
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CICY can be generalised to m projective spaces and k equations. The problem is thus

mapped to:
R Zmxk — N

—  hb1 oor pl

What is £7?

A(M) — Zn(M; w) s.t. nILngo f(M; w) = nll)rr;o |Z (M) — Z,(M; w)| =0

28 / 39
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Deep Learning
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Machine Learning

exchange analytical solution with optimisation problem
use various algorithms and exploit large datasets
learn a representation rather than a solution

effectively use knowledge from computer science, mathematics and physics to solve
problems
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exchange analytical solution with optimisation problem
use various algorithms and exploit large datasets
learn a representation rather than a solution

effectively use knowledge from computer science, mathematics and physics to solve

problems
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Machine Learning pipeline:

exploratory data analysis — feature selection — Hodge numbers
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Machine Learning pipeline:
exploratory data analysis — feature selection — Hodge numbers

Correlation Matrix of the Scalar Features Importance of the Scalar Features (w/ matrix)
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e ht:1 €1, 16] and h*! € [15, 86]
® 30% training, 10% validation, 10% test
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7890 CICY manifolds (full dataset)

dataset pruning: no product spaces, no “very far’ outliers (reduction of 0.49%)
ht1 € [1, 16] and h*1 € [15, 86]

80% training, 10% validation, 10% test

choose regression, but evaluate using accuracy (round the result)

18

16 . ‘. i 3

14 0 .

12

o N & o ®

. 0 .

full clean full clean
Type of distribution Type of distribution
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A Word on PCA

Ditribution of the Egenaies of 3 Wshart Dsta Matrix 3nd Marchénko —pastur Limitng Disrtuton

What is PCA for a X € R"™*P?

® find new coordinates to “put the + |
variance in order”’ 4]

® equivalently compute the H DY

finding a better representation of 0or

eigenvectors of XX 7 or the ‘
. Singular Value Decomp. - Variance Retained per Component Singular Value Decomp. - Cumulative Variance Retained
S|ngUIar values Of X o 99.0% of variance retained
. . 0.08 o ’
® isolate the signal from the
background 5
® case the machine learning job of £

the input o2 "
.-
o s s s w0 ms wmo s o s s w0 ms wmo s
component of the configuration matrix component of the configuration matrix
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Configuration Matrix Only

== h*2 (30% ratio)
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Machine Learning Results
Configuration Matrix Only Best Training Set

I I‘%
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Deep Learmng

Artificial Intelligence and Neural Networks

® use gradient descent to optimise weights

learn highly non linear representations of the input

can be ‘“large” to have enough parameters

® can be “deep” to to learn complicated functions

Neural Networks

fully connected:  al) U1} = ¢ (a1 Wil + plli1)
convolutional: a1y = ¢ (a1« wilt 4 plliT)

Non linearity ensured by:

®(z) = ReLU(z) = max (0, z)

hidden layers
(ReLU activation)
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Time

Convolutional Neural Networks

Why convolutional?

® retain spacial awareness

Mh1=1L h;1 =19

01 2 3 45 6 7 8 91011

12 13

14

10

0.0
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Convolutional Neural Networks

Why convolutional?

1.0
hi1=6.hn=26

o

® retain spacial awareness 1 038
® smaller no. of parameters i

(=2 x 10°% vs. &~ 2 x 10°) . 06
5
3]

7 0.4
8
9

10 02
11

01 2 3 4 5 6 7 8 9 10 11 12 13 14
0.0
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Convolutional Neural Networks

Why convolutional?

10
hi=5hn=31
v}
® retain spacial awareness 1 08
2
® smaller no. of parameters 3
(=2 x 10% vs. &~ 2 x 106) 4 06
. 5
® weights are shared .
7 0.4
8
9
10 02
11
01 2 3 4 5 6 7 8 910111213 14
0.0
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Why convolutional?

® retain spacial awareness conolutions! lyers (5 x5

kernel, ReLU activation)

® smaller no. of parameters // VRN

(=2 x 10° vs. & 2 x 10°) )
® weights are shared

® CNN can isolate “defining
features” . y - e
- S ’ // B
00215 100012 x 15 40012 x 15 20012 x 15
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Convolutional Neural Networks

Why convolutional?

retain spacial awareness

smaller no. of parameters
(=2 x 10° vs. &~ 2 x 10°)

weights are shared

CNN can isolate “defining
features”

find patterns as in computer
vision

Time Divergences
000000000

180012 x 15

100012 x 1

convolutional layers (5 x 5
kernel, ReLU activation)

———/ "\

Deep Learning

0000000000 e0000
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Inception Neural Networks

Recent development by Google's deep learning teams led to:
® neural networks with better generalisation properties
® smaller networks (both parameters and depth)
e different concurrent kernels (e.g. one over equations one over coordinates)
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Inception Neural Networks

Recent development by Google's deep learning teams led to:
® neural networks with better generalisation properties
® smaller networks (both parameters and depth)
e different concurrent kernels (e.g. one over equations one over coordinates)

concatenation module 1 concatenation module 2 concatenation module 3
hor: 1 x 15 kernel hor: 1 x 15 kernel hor: 1 x 15 kernel
ver: 12 x 1 kernel ver: 12 x 1 kernel ver: 12 x 1 kernel
(ReLU activation) (ReLU activation) (ReLU activation)

) 7 Y
& /4

nput layer

L L L 37 /39
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accuracy

03

00

Time Divergences
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Deep Learning
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Deep Learning Results and Generalisation Properties

Best Training Set
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® reliable predictive method
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A Few Comments and Future Directions
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A Few Comments and Future Directions

Why deep learning in physics?

reliable predictive method (provided good data analysis)
reliable source of inspiration (provided good data analysis)
reliable generalisation method (provided good data analysis)
CNNs are powerful tools (this is the first time in physics!)

interdisciplinary approach = win-win situation!

What now?

representation learning = what is the best way to represent CICYs?

study invariances = invariances should not influence the result (graph representations?)
higher dimensions = what about CICY 4-folds?

geometric deep learning = explain the geometry of the “Al" behind deep learning!

reinforcement learning = give the rules, not the result!
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