D-branes and Deep Learning

Theoretical and Computational Aspects in String Theory

Riccardo Finotello

Scuola di Dottorato in Fisica e Astrofisica
Università degli Studi di Torino
and
I.N.F.N. – sezione di Torino

Contents

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Concepts and Tools
D-branes Intersecting at Angles
Fermions and Point-like Defect CFT

Cosmological Backgrounds and Divergences

Orbifolds and Cosmological Toy Models Null Boost Orbifold

Deep Learning the Geometry of String Theory

Machine Learning and Deep Learning
Machine Learning for String Theory
Al Implementations for Geometry and Strings

Contents

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Concepts and Tools
D-branes Intersecting at Angles
Fermions and Point-like Defect CFT

Cosmological Backgrounds and Divergences

Orbifolds and Cosmological Toy Models Null Boost Orbifold

Deep Learning the Geometry of String Theory

Machine Learning and Deep Learning
Machine Learning for String Theory
Al Implementations for Geometry and String

Polyakov's Action

$$S_P[\gamma, X, \psi] = -rac{1}{4\pi}\int\limits_{-\infty}^{+\infty} \mathrm{d} au \int\limits_{0}^{\ell} \mathrm{d}\sigma \, \sqrt{-\det\gamma} \, \gamma^{lphaeta} \left(rac{2}{lpha'}\, \partial_lpha X^\mu \, \partial_eta X^
u + \psi^\mu \,
ho_lpha \partial_eta \psi^
u
ight) \eta_{\mu
u}$$

Polyakov's Action

$$S_P[\gamma,\,X,\,\psi] = -rac{1}{4\pi}\int\limits_{-\infty}^{+\infty}\mathrm{d} au\int\limits_{0}^{\ell}\mathrm{d}\sigma\,\sqrt{-\det\gamma}\,\gamma^{lphaeta}\left(rac{2}{lpha'}\,\partial_lpha X^\mu\,\partial_eta X^
u + \psi^\mu\,
ho_lpha\partial_eta\psi^
u
ight)\eta_{\mu
u}$$

Symmetries:

- Poincaré transf. $X'^{\mu} = \Lambda^{\mu}_{\ \nu} X^{\nu} + c^{\mu}$
- 2D diff. $\gamma'_{\alpha\beta} = \left(J^{-1}\right)_{\alpha\beta}^{\quad \ \lambda\rho} \gamma_{\lambda\rho}$
- Weyl transf. $\gamma'_{\alpha\beta} = e^{2\omega} \gamma_{\alpha\beta}$

Polyakov's Action

$$S_P[\gamma,\,X,\,\psi] = -rac{1}{4\pi}\int\limits_0^{+\infty}\mathrm{d} au\int\limits_0^\ell\mathrm{d}\sigma\,\sqrt{-\det\gamma}\,\gamma^{lphaeta}\left(rac{2}{lpha'}\,\partial_lpha X^\mu\,\partial_eta X^
u + \psi^\mu\,
ho_lpha\partial_eta\psi^
u
ight)\eta_{\mu
u}$$

Symmetries:

- Poincaré transf. $X'^{\mu} = \Lambda^{\mu}_{\ \nu} X^{\nu} + c^{\mu}$
- 2D diff. $\gamma'_{\alpha\beta} = (J^{-1})_{\alpha\beta}^{\quad \lambda\rho} \gamma_{\lambda\rho}$
- Weyl transf. $\gamma'_{\alpha\beta} = e^{2\omega} \gamma_{\alpha\beta}$

Conformal symmetry:

- vanishing stress-energy tensor: $\mathcal{T}_{\alpha\beta}=0$
- traceless stress-energy tensor: tr T = 0
- conformal gauge $\gamma_{\alpha\beta} = e^{\varphi} \, \eta_{\alpha\beta}$

Superstrings in *D* dimensions:

$$\mathcal{T}(z) = -\frac{1}{\alpha'}\partial X(z)\cdot\partial X(z) - \frac{1}{2}\psi(z)\cdot\partial\psi(z) \quad \Rightarrow \quad c = \frac{3}{2}D$$

Superstrings in *D* dimensions:

$$\mathcal{T}(z) = -\frac{1}{\alpha'}\partial X(z)\cdot\partial X(z) - \frac{1}{2}\psi(z)\cdot\partial\psi(z) \quad \Rightarrow \quad c = \frac{3}{2}D$$

$(\lambda,0)$ / $(1-\lambda,0)$ Ghost System

Introduce anti-commuting (b, c) and commuting (β, γ) conformal fields:

$$S_{\mathsf{ghost}}[b,\,c,\,eta,\,\gamma] = rac{1}{2\pi} \iint \mathrm{d}z\,\mathrm{d}\overline{z}\,ig(b(z)\,\overline{\partial}c(z) + eta(z)\,\overline{\partial}\gamma(z)ig)$$

where $\lambda_b=2$ and $\lambda_c=-1$, and $\lambda_\beta=\frac{3}{2}$ and $\lambda_\gamma=-\frac{1}{2}$.

Superstrings in *D* dimensions:

$$\mathcal{T}(z) = -\frac{1}{\alpha'}\partial X(z)\cdot\partial X(z) - \frac{1}{2}\psi(z)\cdot\partial\psi(z) \quad \Rightarrow \quad c = \frac{3}{2}D$$

$(\lambda,0)$ / $(1-\lambda,0)$ Ghost System

Introduce anti-commuting (b, c) and commuting (β, γ) conformal fields:

$$S_{\mathsf{ghost}}[b,\,c,\,eta,\,\gamma] = rac{1}{2\pi} \iint \mathrm{d}z\,\mathrm{d}\overline{z}\,ig(b(z)\,\overline{\partial}c(z) + eta(z)\,\overline{\partial}\gamma(z)ig)$$

where $\lambda_b=2$ and $\lambda_c=-1$, and $\lambda_\beta=\frac{3}{2}$ and $\lambda_\gamma=-\frac{1}{2}$.

Consequence:

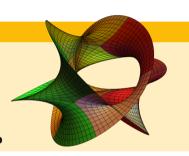
$$c_{\mathsf{full}} = c + c_{\mathsf{ghost}} = 0 \quad \Leftrightarrow \quad D = 10.$$

Extra Dimensions and Compactification

Compactification

$$\mathcal{M}^{1,9} = \mathcal{M}^{1,3} \otimes \mathscr{X}_6$$

- \mathscr{X}_6 is a **compact** manifold
- *N* = 1 **supersymmetry** is preserved in 4D
- algebra of $SU(3) \otimes SU(2) \otimes U(1)$ in arising gauge group

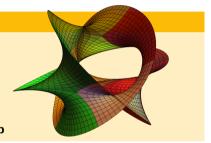


Extra Dimensions and Compactification

Compactification

$$\mathcal{M}^{1,9} = \mathcal{M}^{1,3} \otimes \mathscr{X}_6$$

- \mathcal{X}_6 is a **compact** manifold
- N=1 supersymmetry is preserved in 4D
- algebra of $SU(3) \otimes SU(2) \otimes U(1)$ in arising gauge group



Kähler manifolds (M, g) such that

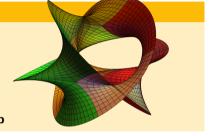
- $\dim_{\mathbb{C}} M = m$
- $\operatorname{Hol}(g) \subseteq \operatorname{SU}(m)$
- g is Ricci-flat (equiv. $c_1(M)$ vanishes)

Extra Dimensions and Compactification

Compactification

$$\mathcal{M}^{1,9} = \mathcal{M}^{1,3} \otimes \mathscr{X}_6$$

- \mathcal{X}_6 is a **compact** manifold
- N=1 supersymmetry is preserved in 4D
- algebra of $SU(3) \otimes SU(2) \otimes U(1)$ in arising gauge group



Kähler manifolds (M, g) such that

- $\dim_{\mathbb{C}} M = m$
- $\operatorname{Hol}(g) \subseteq \operatorname{SU}(m)$
- g is Ricci-flat (equiv. $c_1(M)$ vanishes)

Characterised by Hodge numbers

$$h^{r,s} = \dim_{\mathbb{C}} H^{r,s}_{\overline{\partial}}(M, \mathbb{C})$$

counting the no. of harmonic (r, s)-forms.

Polyakov's action naturally introduces Neumann b.c.:

$$\partial_{\sigma}X(\tau,\sigma)\Big|_{\sigma=0}^{\sigma=\ell}=0$$

satisfied by **open and closed** strings living in *D* dimensions s.t. $\Box X = 0$.

Polyakov's action naturally introduces Neumann b.c.:

$$\partial_{\sigma}X(\tau,\sigma)\Big|_{\sigma=0}^{\sigma=\ell}=0$$

satisfied by **open and closed** strings living in *D* dimensions s.t. $\Box X = 0$.

T-duality

$$X(z,\overline{z}) = X(z) + \overline{X}(\overline{z}) \quad \stackrel{T}{\Rightarrow} \quad X(z) - \overline{X}(\overline{z}) = Y(z,\overline{z}) = Y(z) + \overline{Y}(\overline{z})$$

Polyakov's action naturally introduces Neumann b.c.:

$$\partial_{\sigma}X(\tau,\sigma)\bigg|_{\sigma=0}^{\sigma=\ell}=0$$

satisfied by **open and closed** strings living in *D* dimensions s.t. $\Box X = 0$.

T-duality

$$X(z,\overline{z}) = X(z) + \overline{X}(\overline{z}) \quad \stackrel{T}{\Rightarrow} \quad X(z) - \overline{X}(\overline{z}) = Y(z,\overline{z}) = Y(z) + \overline{Y}(\overline{z})$$

Resulting effect (repeated $p \le D - 1$ times) leads to Dirichlet b.c.:

$$\left.\partial_{\sigma}X^{i}(au,\sigma)\right|_{\sigma=0}^{\sigma=\ell}=0\quad\stackrel{T}{\Rightarrow}\quad\left.\partial_{ au}Y^{i}(au,\sigma)\right|_{\sigma=0}^{\sigma=\ell}=0\quadorall i=1,2,\,\ldots,\,p$$

thus **open strings** can be **constrained** to D(D-p-1)-branes.

Introducing Dp-branes breaks $ISO(1, D-1) \rightarrow ISO(1, p) \otimes SO(D-1-p)$.

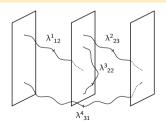
Introducing Dp-branes breaks $ISO(1, D-1) \rightarrow ISO(1, p) \otimes SO(D-1-p)$.

Massless Spectrum (irrep of little group SO(D-2)

Introducing Dp-branes breaks $ISO(1, D-1) \rightarrow ISO(1, p) \otimes SO(D-1-p)$.

Massless Spectrum (irrep of little group SO(D-2)

$$\mathcal{A}^{\mu} \quad \leftrightarrow \quad \alpha_{-1}^{\mu} \ket{0} \qquad \longrightarrow \qquad \begin{array}{c} \mathcal{A}^{A} \quad \leftrightarrow \quad \alpha_{-1}^{A} \ket{0}, \quad A=0, 1, \ldots, p \\ \mathcal{A}^{a} \quad \leftrightarrow \quad \alpha_{-1}^{a} \ket{0}, \quad a=1, 2, \ldots, D-p-1 \end{array}$$



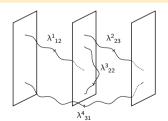
Introducing **Chan–Paton factors** λ^{r}_{ij} , when branes are **coincident**:

$$\bigoplus_{r=1}^{N} \mathrm{U}_{r}(1) \longrightarrow \mathrm{U}(N)$$

Introducing Dp-branes breaks $ISO(1, D-1) \rightarrow ISO(1, p) \otimes SO(D-1-p)$.

Massless Spectrum (irrep of little group SO(D-2)

$$\mathcal{A}^{\mu} \quad \leftrightarrow \quad lpha_{-1}^{\mu} \ket{0} \qquad \longrightarrow \qquad egin{array}{cccc} \mathcal{A}^{A} & \leftrightarrow & lpha_{-1}^{A} \ket{0}, & A=0,\,1,\,\ldots,\,p \ \mathcal{A}^{a} & \leftrightarrow & lpha_{-1}^{a} \ket{0}, & a=1,\,2,\,\ldots,\,D-p-1 \end{array}$$

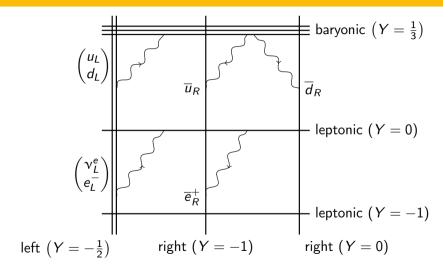


Introducing **Chan–Paton factors** λ^r_{ij} , when branes are **coincident**:

$$\bigoplus_{r=0}^{N} \mathrm{U}_{r}(1) \longrightarrow \mathrm{U}(N)$$

Build gauge bosons, fermions and scalars.

Standard Model-like Scenarios



Intersecting D-branes

Consider N intersecting D6-branes filling $\mathcal{M}^{1,3}$ and embedded in \mathbb{R}^6

Twist Fields Correlators

$$\left\langle \prod_{t=1}^{N_B} \sigma_{\mathrm{M}_{(t)}} \big(x_{(t)} \big) \right\rangle = \mathcal{N} \Big(\big\{ x_{(t)}, \, \mathrm{M}_{(t)} \big\}_{1 \leq t \leq N_B} \Big) e^{-S_{E(\mathbf{el})} \Big(\big\{ x_{(t)}, \, \mathrm{M}_{(t)} \big\}_{1 \leq t \leq N_B} \Big)}$$

Intersecting D-branes

Consider N intersecting D6-branes filling $\mathcal{M}^{1,3}$ and embedded in \mathbb{R}^6

Twist Fields Correlators

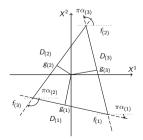
$$\left\langle \prod_{t=1}^{N_B} \sigma_{\mathbf{M}_{(t)}} (x_{(t)}) \right\rangle = \mathcal{N} \left(\left\{ x_{(t)}, \, \mathbf{M}_{(t)} \right\}_{1 \leq t \leq N_B} \right) e^{-S_{E(\mathbf{cl})} \left(\left\{ x_{(t)}, \, \mathbf{M}_{(t)} \right\}_{1 \leq t \leq N_B} \right)}$$

Intersecting D-branes

Consider N intersecting D6-branes filling $\mathcal{M}^{1,3}$ and embedded in \mathbb{R}^6

Twist Fields Correlators

$$\left\langle \prod_{t=1}^{N_B} \sigma_{\mathrm{M}_{(t)}} (x_{(t)}) \right\rangle = \mathcal{N} \Big(\left\{ x_{(t)}, \, \mathrm{M}_{(t)} \right\}_{1 \leq t \leq N_B} \Big) e^{-S_{\mathcal{E}(\mathbf{cl})} \Big(\left\{ x_{(t)}, \, \mathrm{M}_{(t)} \right\}_{1 \leq t \leq N_B} \Big)}$$



D-branes in **factorised** internal space:

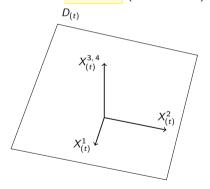
- embedded as lines in $\mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2$
- relative rotations are $\mathrm{SO}(2) \simeq \mathrm{U}(1)$ elements

•
$$S_{E \text{ (cl)}} \left(\left\{ x_{(t)}, \, \mathbf{M}_{(t)} \right\}_{1 \leq t \leq N_B} \right) \sim$$

$$Area \left(\left\{ f_{(t)}, \, \mathbf{R}_{(t)} \right\}_{1 \leq t \leq N_B} \right)$$

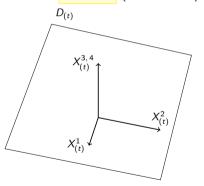
Consider $\mathbb{R}^4 \times \mathbb{R}^2$ (focus on \mathbb{R}^4):

Consider $\mathbb{R}^4 \times \mathbb{R}^2$ (focus on \mathbb{R}^4):



$$(X_{(t)})^{I} = (R_{(t)})^{I}_{I} X^{J} - g_{(t)}^{I}$$

Consider $\mathbb{R}^4 \times \mathbb{R}^2$ (focus on \mathbb{R}^4):

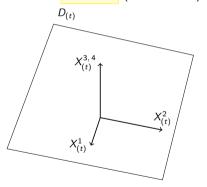


where

$$(X_{(t)})^{I} = (R_{(t)})^{I}_{J} X^{J} - g_{(t)}^{I}$$

$$R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}(\mathrm{O}(2) \times \mathrm{O}(2))}$$

Consider $\mathbb{R}^4 \times \mathbb{R}^2$ (focus on \mathbb{R}^4):



$$(X_{(t)})' =$$

where

that is

$$(X_{(t)})^{I} = (R_{(t)})^{I}_{I} X^{J} - g_{(t)}^{I}$$

$$R_{(t)} \in rac{\mathrm{SO}(4)}{\mathrm{S}(\mathrm{O}(2) imes \mathrm{O}(2))}$$

$$[R_{(t)}] = \{R_{(t)} \sim \mathcal{O}_{(t)}R_{(t)}\}$$

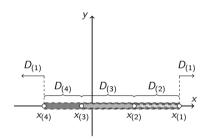
Boundary Conditions

What are the consequences for open strings?

Boundary Conditions

What are the consequences for open strings?

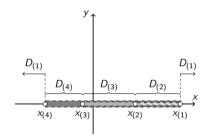
- consider $u = x + iy = e^{\tau_e + i\sigma}$ and $\overline{u} = u^*$
- let $x_{(t)} < x_{(t-1)}$ be the worldsheet intersection points on real axis
- $X_{(t)}^{1,2}$ are Neumann, $X_{(t)}^{3,4}$ are Dirichlet



Boundary Conditions

What are the consequences for open strings?

- consider $u = x + iy = e^{\tau_e + i\sigma}$ and $\overline{u} = u^*$
- let $x_{(t)} < x_{(t-1)}$ be the worldsheet intersection points on real axis
- $X_{(t)}^{1,2}$ are Neumann, $X_{(t)}^{3,4}$ are Dirichlet



Branch Cuts and Discontinuities for $x \in D_{(t)}$

$$\begin{cases} \partial_{u}X(x+i0^{+}) &= U_{(t)} \cdot \partial_{\overline{u}}\overline{X}(x-i0^{+}) = \left[R_{(t)}^{-1} \cdot (\sigma_{3} \otimes \mathbb{1}_{2}) \cdot R_{(t)}\right] \cdot \partial_{\overline{u}}\overline{X}(x-i0^{+}) \\ X(x_{(t)}, x_{(t)}) &= f_{(t)} \end{cases}$$

Doubling Trick and Spinor Representation

Doubling Trick

$$\partial_z \mathcal{X}(z) = \begin{cases} \partial_u X(u) & \text{if } z \in \mathscr{H}_>^{(\overline{t})} \\ U_{(\overline{t})} \, \partial_{\overline{u}} \overline{X}(\overline{u}) & \text{if } z \in \mathscr{H}_<^{(\overline{t})} \end{cases} \Rightarrow \begin{aligned} \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i} \delta_+) &= \mathcal{U}_{(t,\,t+1)} \, \partial_z \mathcal{X}(x_{(t)} + \delta_+), \\ \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i} \delta_-) &= \widetilde{\mathcal{U}}_{(t,\,t+1)} \, \partial_z \mathcal{X}(x_{(t)} + \delta_-), \end{aligned}$$

where
$$\mathscr{H}_{\geqslant}^{(t)} = \left\{z \in \mathbb{C} \mid \operatorname{Im} z \gtrless 0 \text{ or } z \in D_{(t)} \right\}$$
 and $\delta_{\pm} = \eta \pm i0^+$.

Doubling Trick and Spinor Representation

Doubling Trick

$$\partial_z \mathcal{X}(z) = \begin{cases} \partial_u X(u) & \text{if } z \in \mathscr{H}_>^{(\overline{t})} \\ U_{(\overline{t})} \, \partial_{\overline{u}} \overline{X}(\overline{u}) & \text{if } z \in \mathscr{H}_<^{(\overline{t})} \end{cases} \Rightarrow \begin{cases} \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i}\delta_+) & \mathcal{U}_{(t,\,t+1)} \, \partial_z \mathcal{X}(x_{(t)} + \delta_+), \\ \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i}\delta_-) & \mathcal{U}_{(t,\,t+1)} \, \partial_z \mathcal{X}(x_{(t)} + \delta_-), \end{cases}$$
 where $\mathscr{H}_>^{(t)} = \left\{ z \in \mathbb{C} \mid \operatorname{Im} z \geq 0 \text{ or } z \in D_{(t)} \right\}$ and $\delta_\pm = \eta \pm i0^+.$

Doubling Trick and Spinor Representation

Doubling Trick

$$\partial_z \mathcal{X}(z) = \begin{cases} \partial_u X(u) & \text{if } z \in \mathscr{H}_>^{(\overline{t})} \\ U_{(\overline{t})} \, \partial_{\overline{u}} \overline{X}(\overline{u}) & \text{if } z \in \mathscr{H}_<^{(\overline{t})} \end{cases} \Rightarrow \begin{cases} \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i} \delta_+) & \mathcal{U}_{(t,\,t+1)} \, \partial_z \mathcal{X}(x_{(t)} + \delta_+), \\ \partial_z \mathcal{X}(x_{(t)} + e^{2\pi i} \delta_-) & \mathcal{U}_{(t,\,t+1)} \, \partial_z \mathcal{X}(x_{(t)} + \delta_-), \end{cases}$$
 where $\mathscr{H}_>^{(t)} = \{ z \in \mathbb{C} \mid \operatorname{Im} z \geq 0 \text{ or } z \in D_{(t)} \}$ and $\delta_\pm = \eta \pm i0^+.$

Use Pauli matrices $\tau = (i \mathbb{1}_2, \vec{\sigma})$:

$$\partial_{z}\mathcal{X}_{(s)}(z) = \partial_{z}\mathcal{X}^{I}(z)\,\tau_{I} \quad \Rightarrow \quad \partial_{z}\mathcal{X}(x_{(t)} + e^{2\pi i}\,\delta_{\pm}) = \overset{(\sim)}{\mathcal{L}}_{(t,\,t+1)}^{(\sim)}\,\partial_{z}\mathcal{X}(x_{(t)} + \delta_{\pm}) \overset{(\sim)}{\mathcal{R}}_{(t,\,t+1)}^{(\sim)}$$

where

$$\overset{(\sim)}{\mathcal{L}}_{(t,\,t+1)} \in \mathrm{SU}(2)_L \quad \text{and} \quad \overset{(\sim)}{\mathcal{R}}_{(t,\,t+1)} \in \mathrm{SU}(2)_R$$

Hypergeometric Basis

Sum over all contributions:

$$\partial_z \mathcal{X}(z) = \sum_{l,r} c_{lr} \left(-\omega_z\right)^{A_{lr}} \left(1-\omega_z\right)^{B_{lr}} B_{0,l}^{(L)}(\omega_z) \left(B_{0,r}^{(R)}(\omega_z)\right)^T$$

Hypergeometric Basis

Sum over all contributions:

$$\partial_z \mathcal{X}(z) = \sum_{l,\,r} c_{lr} \left(-\omega_z\right)^{A_{lr}} \left(1-\omega_z\right)^{B_{lr}} B_{0,\,l}^{(L)}(\omega_z) \left(B_{0,\,r}^{(R)}(\omega_z)\right)^T$$

Basis of Solutions

$$B_{0,n}(\omega_z) = \begin{pmatrix} 1 & 0 \\ 0 & K_n \end{pmatrix} \begin{pmatrix} \frac{1}{\Gamma(c_n)} {}_2F_1(a_n, b_n; c_n; \omega_z) \\ \frac{(-\omega_z)^{1-c_n}}{\Gamma(2-c_n)} {}_2F_1(a_n+1-c_n, b_n+1-c_n; 2-c_n; \omega_z) \end{pmatrix}$$

The Solution

Operations sequence:

1. rotation matrix = monodromy matrix

Operations sequence:

- 1. rotation matrix = monodromy matrix
- 2. contiguity relations \Rightarrow independent hypergeometrics

Operations sequence:

- 1. rotation matrix = monodromy matrix
- 2. contiguity relations ⇒ independent hypergeometrics
- **3.** finite action \Rightarrow 2 solutions (no. of d.o.f. is correctly saturated)

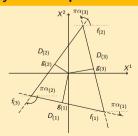
Operations sequence:

- 1. rotation matrix = monodromy matrix
- 2. contiguity relations \Rightarrow independent hypergeometrics
- 3. finite action \Rightarrow 2 solutions (no. of d.o.f. is correctly saturated)
- **4.** boundary conditions \Rightarrow fix free constants c_{lr}

Operations sequence:

- 1. rotation matrix = monodromy matrix
- 2. contiguity relations ⇒ independent hypergeometrics
- 3. finite action \Rightarrow 2 solutions (no. of d.o.f. is correctly saturated)
- **4.** boundary conditions \Rightarrow fix free constants c_{lr}

Physical Interpretation

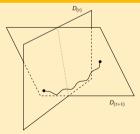


$$\begin{split} S_{\mathbb{R}^4} \bigg|_{\text{on-shell}} &= \frac{1}{2\pi\alpha'} \sum_{t=1}^3 \left(\frac{1}{2} \Big| g_{(t)}^\perp \Big| \Big| f_{(t-1)} - f_{(t)} \Big| \right) \\ &= \text{Area} \left(\left\{ f_{(t)} \right\} \right) \end{split}$$

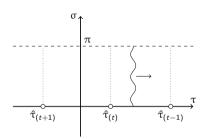
Operations sequence:

- 1. rotation matrix = monodromy matrix
- 2. contiguity relations ⇒ independent hypergeometrics
- 3. finite action \Rightarrow 2 solutions (no. of d.o.f. is correctly saturated)
- **4.** boundary conditions \Rightarrow fix free constants c_{lr}

Physical Interpretation



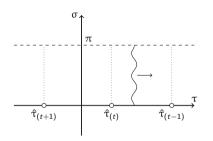
Fermions on the Strip



Action of Boundary Changing Operators

$$\begin{cases} \psi_-^i(\tau,0) &= \left(R_{(t)}\right)^I{}_J \, \psi_+^J(\tau,0) \quad \text{for } \tau \in \left(\hat{\tau}_{(t)},\,\hat{\tau}_{(t-1)}\right) \\ \psi_-^I(\tau,\pi) &= -\psi_+^I(\tau,\pi) \quad \text{for } \tau \in \mathbb{R} \end{cases}$$

Fermions on the Strip



Action of Boundary Changing Operators

$$\begin{cases} \psi_-^i(\tau,0) &= \left(R_{(t)}\right)^I_{\ J} \psi_+^J(\tau,0) \quad \text{for } \tau \in \left(\hat{\tau}_{(t)},\,\hat{\tau}_{(t-1)}\right) \\ \psi_-^I(\tau,\pi) &= -\psi_+^I(\tau,\pi) \quad \text{for } \tau \in \mathbb{R} \end{cases}$$

Stress-energy Tensor

$$\mathcal{T}_{\pm\pm}(\xi_{\pm}) = -i \frac{\mathcal{T}}{4} \psi_{\pm, I}^{*}(\xi_{\pm}) \stackrel{\leftrightarrow}{\partial} \psi_{\pm}^{I}(\xi_{\pm}) \quad \Rightarrow \quad \begin{cases} \dot{H}(\tau) &= 0 \Leftrightarrow \tau \in \left(\tau_{(t)}, \tau_{(t-1)}\right) \\ \dot{P}(\tau) &\neq 0 \end{cases}$$

Conserved Product and Operators

Expand on a basis of solutions

$$\psi_{\pm}(\xi_{\pm}) = \sum_{n=-\infty}^{+\infty} b_n \psi_n(\xi_{\pm}) \qquad \Rightarrow \qquad \Psi(z) = \begin{cases} \psi_{E,+}(u) & \text{if } z \in \mathscr{H}_{>}^{(\bar{t})} \\ \psi_{E,-}(u) & \text{if } z \in \mathscr{H}_{<}^{(\bar{t})} \end{cases}$$

Conserved Product and Operators

Expand on a basis of solutions

$$\psi_{\pm}(\xi_{\pm}) = \sum_{n=-\infty}^{+\infty} b_n \psi_n(\xi_{\pm}) \qquad \Rightarrow \qquad \Psi(z) = \begin{cases} \psi_{E,+}(u) & \text{if } z \in \mathscr{H}_{>}^{(\overline{t})} \\ \psi_{E,-}(u) & \text{if } z \in \mathscr{H}_{<}^{(\overline{t})} \end{cases}$$

Conserved Product and Dual Basis

$$\langle \langle {}^* \psi_n, \psi_m \rangle = 2\pi \mathcal{N} \oint \frac{\mathrm{d}z}{2\pi i} {}^* \Psi_n {}^* \Psi_m = \delta_{n, m} \quad \Rightarrow \quad \left\langle \left\langle {}^* \Psi_n {}^{(*)}, \Psi^{(*)} \right\rangle = b_n^{(\dagger)}$$

Conserved Product and Operators

Expand on a basis of solutions

$$\psi_{\pm}(\xi_{\pm}) = \sum_{n=-\infty}^{+\infty} b_n \psi_n(\xi_{\pm}) \qquad \Rightarrow \qquad \Psi(z) = \begin{cases} \psi_{\mathcal{E},+}(u) & \text{if } z \in \mathscr{H}^{(\overline{t})}_{>} \\ \psi_{\mathcal{E},-}(u) & \text{if } z \in \mathscr{H}^{(\overline{t})}_{<} \end{cases}$$

Conserved Product and Dual Basis

$$\left\langle \left\langle {^*\psi}_n,\, \psi_m \right\rangle = 2\pi \mathcal{N} \oint \frac{\mathrm{d}z}{2\pi i} \, {^*\Psi}_n \, {^*\Psi}_m = \delta_{n,\,m} \quad \Rightarrow \quad \left\langle \left\langle {^*\Psi}_n \, {^{(*)}},\, \Psi^{(*)} \right. \right\rangle = b_n^{(\dagger)}$$

Derive the algebra of operators:

$$\left[b_n, b_m^{\dagger}\right]_+ = \frac{2\mathcal{N}}{\mathcal{T}} \left\langle \left\langle \Psi_n^*, \Psi_m^* \right\rangle \right.$$

Twisted Complex Fermions

Consider the case $R_{(t)} = e^{i\pi\alpha_{(t)}} \in U(1)$:

$$\Psi(x_{(t)} + e^{2\pi i}\delta) = e^{i\pi\epsilon_{(t)}}\Psi(x_{(t)} + \delta)$$

where

$$\epsilon_{(t)} = \alpha_{(t+1)} - \alpha_{(t)} + \theta \big(\alpha_{(t)} - \alpha_{(t+1)} - 1\big) - \theta \big(\alpha_{(t+1)} - \alpha_{(t)} - 1\big)$$

Twisted Complex Fermions

Consider the case $R_{(t)} = e^{i\pi\alpha_{(t)}} \in \mathrm{U}(1)$:

$$\Psi(x_{(t)} + e^{2\pi i}\delta) = e^{i\pi\epsilon_{(t)}}\Psi(x_{(t)} + \delta)$$

where

$$\epsilon_{(t)} = \alpha_{(t+1)} - \alpha_{(t)} + \theta \left(\alpha_{(t)} - \alpha_{(t+1)} - 1\right) - \theta \left(\alpha_{(t+1)} - \alpha_{(t)} - 1\right)$$

Basis of Solutions

$$\Psi_n(z; \{x_{(t)}\}) = \mathcal{N}_{\Psi} z^{-n} \prod_{t=1}^{N} \left(1 - \frac{z}{x_{(t)}}\right)^{n_{(t)} + \frac{e_{(t)}}{2}}$$

*
$$\Psi_n(z; \{x_{(t)}\}) = \frac{1}{2\pi\mathcal{N}\mathcal{N}_{\Psi}} z^{n-1} \prod_{t=1}^N \left(1 - \frac{z}{x_{(t)}}\right)^{-\widetilde{n}_{(t)} + \frac{\epsilon_{(t)}}{2}}$$

Vacua

Define the **vacuum** with respect to b_n :

$$b_n \left| \left\{ x_{(t)} \right\} \right\rangle = 0 \quad \text{for} \quad n \ge 1$$
 $b_n \left| \widetilde{0} \right\rangle = 0 \quad \text{for} \quad n \ge n_{(t)} + \frac{\epsilon_{(t)}}{2} + \frac{1}{2}$

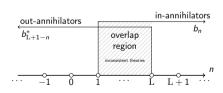
Vacua

Define the **vacuum** with respect to b_n :

$$b_n \left| \left\{ x_{(t)} \right\} \right\rangle = 0 \quad \text{for} \quad n \ge 1$$
 $b_n \left| \widetilde{0} \right\rangle = 0 \quad \text{for} \quad n \ge n_{(t)} + \frac{\epsilon_{(t)}}{2} + \frac{1}{2}$

Theories are subject to consistency conditions:

$$L = n_{(t)} + \widetilde{n}_{(t)}$$



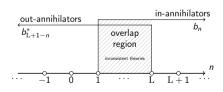
Vacua

Define the **vacuum** with respect to b_n :

$$b_n \left| \left\{ x_{(t)} \right\} \right\rangle = 0 \quad ext{for} \quad n \geq 1$$
 $b_n \left| \widetilde{0} \right\rangle = 0 \quad ext{for} \quad n \geq n_{(t)} + rac{\varepsilon_{(t)}}{2} + rac{1}{2}$

Theories are subject to consistency conditions:

$$L = n_{(t)} + \widetilde{n}_{(t)} = 0$$



Stress-energy Tensor and CFT Approach

Compute the OPEs leading to the stress-energy tensor:

$$\mathcal{T}(z) = \frac{\pi T}{2} \mathcal{N}_{\Psi}^{2} \sum_{n, m=-\infty}^{+\infty} : b_{n} b_{m}^{*} : z^{-n-m} \left[\frac{m-n}{2} + 2 \sum_{t=1}^{N} \frac{n_{(t)} + \frac{\epsilon_{(t)}}{2}}{z - x_{(t)}} \right] + \frac{1}{2} \left(\sum_{t=1}^{N} \frac{n_{(t)} + \frac{\epsilon_{(t)}}{2}}{z - x_{(t)}} \right)^{2}$$

Stress-energy Tensor and CFT Approach

Compute the OPEs leading to the stress-energy tensor:

$$\mathcal{T}(z) = \frac{\pi T}{2} \mathcal{N}_{\Psi}^{2} \sum_{n, m = -\infty}^{+\infty} : b_{n} b_{m}^{*} : z^{-n-m} \left[\frac{m-n}{2} + 2 \sum_{t=1}^{N} \frac{n_{(t)} + \frac{\epsilon_{(t)}}{2}}{z - x_{(t)}} \right] + \frac{1}{2} \left(\sum_{t=1}^{N} \frac{n_{(t)} + \frac{\epsilon_{(t)}}{2}}{z - x_{(t)}} \right)^{2}$$

Invariant Vacuum and Spin Fields

$$\left|\left\{x_{(t)}\right\}\right\rangle = \mathcal{N}\left(\left\{x_{(t)}\right\}\right) \operatorname{R}\left[\prod_{t=1}^{M} S_{(t)}(x_{(t)})\right] \left|0\right\rangle_{\operatorname{SL}_{2}(\mathbb{R})}$$

$$\begin{split} &\partial_{x_{(t)}} \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle = \oint\limits_{x_{(t)}} \frac{\mathrm{d}z}{2\pi i} \frac{\left\langle \left\{ x_{(t)} \right\} \middle| \mathcal{T}(z) \middle| \left\{ x_{(t)} \right\} \right\rangle}{\left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle} \\ &\Rightarrow \quad \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle = \mathcal{N} \left(\left\{ \varepsilon_{(t)} \right\} \right) \prod_{\substack{t=1 \ t>u}}^{N} \left(x_{(u)} - x_{(t)} \right)^{\left(n_{(u)} + \frac{\varepsilon_{(u)}}{2} \right) \left(n_{(t)} + \frac{\varepsilon_{(t)}}{2} \right)} \end{split}$$

Equivalence with Bosonization

$$\begin{split} \partial_{x_{(t)}} \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle &= \oint\limits_{x_{(t)}} \frac{\mathrm{d}z}{2\pi i} \frac{\left\langle \left\{ x_{(t)} \right\} \middle| \mathcal{T}(z) \middle| \left\{ x_{(t)} \right\} \right\rangle}{\left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle} \\ \Rightarrow & \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle &= \mathcal{N} \left(\left\{ \varepsilon_{(t)} \right\} \right) \prod_{\substack{t=1 \ t>u}}^{N} \left(x_{(u)} - x_{(t)} \right)^{\left(n_{(u)} + \frac{\varepsilon_{(u)}}{2} \right) \left(n_{(t)} + \frac{\varepsilon_{(t)}}{2} \right)} \end{split}$$

• (semi-)phenomenological models involve twist and spin fields and open strings

$$\begin{split} &\partial_{x_{(t)}} \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle = \oint\limits_{x_{(t)}} \frac{\mathrm{d}z}{2\pi i} \frac{\left\langle \left\{ x_{(t)} \right\} \middle| \mathcal{T}(z) \middle| \left\{ x_{(t)} \right\} \right\rangle}{\left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle} \\ &\Rightarrow \quad \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle = \mathcal{N} \left(\left\{ \varepsilon_{(t)} \right\} \right) \prod_{\substack{t=1 \ t>u}}^{N} \left(x_{(u)} - x_{(t)} \right)^{\left(n_{(u)} + \frac{\varepsilon_{(u)}}{2} \right) \left(n_{(t)} + \frac{\varepsilon_{(t)}}{2} \right)} \end{split}$$

- (semi-)phenomenological models involve twist and spin fields and open strings
- general framework for bosonic open strings with intersecting D-branes

$$\begin{split} &\partial_{x_{(t)}} \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle = \oint\limits_{x_{(t)}} \frac{\mathrm{d}z}{2\pi i} \frac{\left\langle \left\{ x_{(t)} \right\} \middle| \mathcal{T}(z) \middle| \left\{ x_{(t)} \right\} \right\rangle}{\left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle} \\ &\Rightarrow \quad \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle = \mathcal{N} \left(\left\{ \varepsilon_{(t)} \right\} \right) \prod_{\substack{t=1 \ t>u}}^{N} \left(x_{(u)} - x_{(t)} \right)^{\left(n_{(u)} + \frac{\varepsilon_{(u)}}{2} \right) \left(n_{(t)} + \frac{\varepsilon_{(t)}}{2} \right)} \end{split}$$

- (semi-)phenomenological models involve twist and spin fields and open strings
- general framework for bosonic open strings with intersecting D-branes
- leading contribution for twist fields

$$\begin{split} \partial_{x_{(t)}} \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle &= \oint\limits_{x_{(t)}} \frac{\mathrm{d}z}{2\pi i} \frac{\left\langle \left\{ x_{(t)} \right\} \middle| \mathcal{T}(z) \middle| \left\{ x_{(t)} \right\} \right\rangle}{\left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle} \\ \Rightarrow & \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle &= \mathcal{N} \left(\left\{ \varepsilon_{(t)} \right\} \right) \prod_{\substack{t=1 \ t>u}}^{N} \left(x_{(u)} - x_{(t)} \right)^{\left(n_{(u)} + \frac{\varepsilon_{(u)}}{2} \right) \left(n_{(t)} + \frac{\varepsilon_{(t)}}{2} \right)} \end{split}$$

- (semi-)phenomenological models involve twist and spin fields and open strings
- general framework for bosonic open strings with intersecting D-branes
- leading contribution for twist fields
- spin fields as boundary changing operators on defects

$$\begin{split} \partial_{x_{(t)}} \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle &= \oint\limits_{x_{(t)}} \frac{\mathrm{d}z}{2\pi i} \frac{\left\langle \left\{ x_{(t)} \right\} \middle| \mathcal{T}(z) \middle| \left\{ x_{(t)} \right\} \right\rangle}{\left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle} \\ \Rightarrow \quad \left\langle \left\{ x_{(t)} \right\} \middle| \left\{ x_{(t)} \right\} \right\rangle &= \mathcal{N} \left(\left\{ \varepsilon_{(t)} \right\} \right) \prod_{\substack{t=1 \ t>u}}^{N} \left(x_{(u)} - x_{(t)} \right)^{\left(n_{(u)} + \frac{\varepsilon_{(u)}}{2} \right) \left(n_{(t)} + \frac{\varepsilon_{(t)}}{2} \right)} \end{split}$$

- (semi-)phenomenological models involve twist and spin fields and open strings
- general framework for bosonic open strings with intersecting D-branes
- leading contribution for twist fields
- spin fields as boundary changing operators on defects
- alternative framework for amplitudes (extension to (non) Abelian twist/spin fields?)

Contents

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Concepts and Tools
D-branes Intersecting at Angles
Fermions and Point-like Defect CFT

Cosmological Backgrounds and Divergences

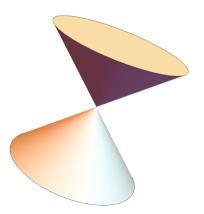
Orbifolds and Cosmological Toy Models Null Boost Orbifold

Deep Learning the Geometry of String Theory

Machine Learning and Deep Learning
Machine Learning for String Theory
Al Implementations for Geometry and String

string theory = theory of everything = nuclear forces + gravity

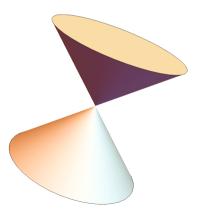
string theory = theory of everything = nuclear forces + gravity



From the phenomenological point of view:

cosmological implications

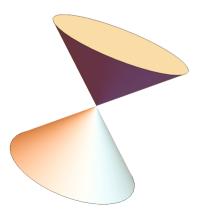
string theory = theory of everything = nuclear forces + gravity



From the phenomenological point of view:

- cosmological implications
- Big Bang(-like) singularities

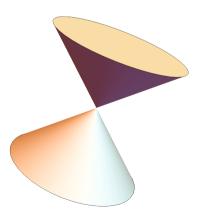
string theory = theory of everything = nuclear forces + gravity



From the phenomenological point of view:

- cosmological implications
- Big Bang(-like) singularities
- toy models of space-like singularities

string theory = theory of everything = nuclear forces + gravity



From the phenomenological point of view:

- cosmological implications
- Big Bang(-like) singularities
- toy models of space-like singularities

time-dependent orbifold models

Orbifolds

Mathematics

- manifold M
- (Lie) group G
- stabilizer $G_p = \{g \in G \mid gp = p \in M\}$
- orbit $Gp = \{gp \in M \mid g \in G\}$
- charts $\phi = \pi \circ \mathscr{P}$ where:
 - $\mathscr{P}: U \subset \mathbb{R}^n \to U/G$
 - $\pi \colon U/G \to M$

Physics

- global orbit space M/G
- *G* group of isometries
- fixed points
- additional d.o.f. (twisted states)
- singular limits of CY manifolds

Orbifolds

Mathematics

- manifold M
- (Lie) group G
- stabilizer $G_p = \{g \in G \mid gp = p \in M\}$
- orbit $Gp = \{gp \in M \mid g \in G\}$
- charts $\phi = \pi \circ \mathscr{P}$ where:
 - $\mathscr{P}: U \subset \mathbb{R}^n \to U/G$
 - $\pi \colon U/G \to M$

Physics

- global orbit space M/G
- *G* group of isometries
- fixed points
- additional d.o.f. (twisted states)
- singular limits of CY manifolds

time-dependent orbifolds

Cosmological Singularities

Use time-dependent orbifolds to model space-like singularities:

divergent closed string aplitudes ⇒ gravitational backreaction?

Cosmological Singularities

Use time-dependent orbifolds to model space-like singularities:

divergent closed string aplitudes ⇒ gravitational backreaction?

Divergences

Even in simple models (e.g. NBO, more on this later) the 4 tachyons amplitude is divergent at tree level:

$$A_4 \sim \int\limits_{q \sim \infty} rac{\mathrm{d} q}{|q|} \mathscr{A}(q)$$

where

$$\mathscr{A}_{\mathsf{closed}}(q) \sim q^{4-lpha' \|ec{
ho}_{\perp}\|^2} \qquad \mathsf{and} \qquad \mathscr{A}_{\mathsf{open}}(q) \sim q^{1-lpha' \|ec{
ho}_{\perp}\|^2} \operatorname{\mathsf{tr}}([T_1, \ T_2]_+ [T_3, \ T_4]_+)$$

Null Boost Orbifold

Start from $(x^+, x^-, x^2, \vec{x}) \in \mathcal{M}^{1, D-1}$:

$$\begin{cases} u = x^{-} \\ z = \frac{x^{2}}{\Delta x^{-}} \\ v = x^{+} - \frac{1}{2} \frac{(x^{2})^{2}}{x^{-}} \end{cases} \Rightarrow ds^{2} = -2 du dv + (\Delta u)^{2} dz^{2} + \delta_{ij} dx^{i} dx^{j}$$

Null Boost Orbifold

Start from $(x^+, x^-, x^2, \vec{x}) \in \mathcal{M}^{1, D-1}$:

$$\begin{cases} u = x^{-} \\ z = \frac{x^{2}}{\Delta x^{-}} \\ v = x^{+} - \frac{1}{2} \frac{\left(x^{2}\right)^{2}}{x^{-}} \end{cases} \Rightarrow ds^{2} = -2 du dv + (\Delta u)^{2} dz^{2} + \delta_{ij} dx^{j} dx^{j}$$

Killing Vector and Null Boost Oribfold

$$\kappa = -i(2\pi\Delta)J_{+2} = 2\pi\partial_z \Rightarrow z \sim z + 2\pi n$$

Null Boost Orbifold

Start from $(x^+, x^-, x^2, \vec{x}) \in \mathcal{M}^{1, D-1}$:

$$\begin{cases} u = x^{-} \\ z = \frac{x^{2}}{\Delta x^{-}} \\ v = x^{+} - \frac{1}{2} \frac{(x^{2})^{2}}{2} \end{cases} \Rightarrow ds^{2} = -2 du dv + (\Delta u)^{2} dz^{2} + \delta_{ij} dx^{i} dx^{j}$$

Killing Vector and Null Boost Oribfold

$$\kappa = -i(2\pi\Delta)J_{+2} = 2\pi\partial_z \Rightarrow z \sim z + 2\pi n$$

Consider scalar QED:

$$\Phi_{\{k_{+},l,\vec{k},r\}}(u,v,z,\vec{x}) = e^{i(k_{+}v + lz + \vec{k} \cdot \vec{x})} \widetilde{\Phi}_{\{k_{+},l,\vec{k},r\}}(u) = \frac{e^{i(k_{+}v + lz + \vec{k} \cdot \vec{x})}}{\sqrt{(2\pi)^{D} |2\Delta k_{+}u|}} e^{-i\frac{j^{2}}{2\Delta^{2}k_{+}} \frac{1}{u} + i\frac{||\vec{k}||^{2} + r}{2k_{+}}u}$$

Scalar QED Interactions

Scalar-photon interactions:

$$S_{\mathsf{sQED}}^{(\mathsf{int})} = \int\limits_{\Omega} \mathrm{d}^D x \, \sqrt{-g} \left(-i \, e \, g^{\alpha\beta} \, a_{\alpha} (\varphi^* \, \partial_{\beta} \varphi - \partial_{\beta} \varphi^* \, \varphi) + e^2 \, g^{\alpha\beta} \, a_{\alpha} a_{\beta} |\varphi|^2 - \frac{g_4}{4} \, |\varphi|^4 \right)$$

Scalar QED Interactions

Scalar-photon interactions:

$$S_{\mathsf{sQED}}^{(\mathsf{int})} = \int \mathrm{d}^D x \, \sqrt{-g} \left(-i \, e \, g^{\alpha\beta} \, a_{\alpha} (\varphi^* \, \partial_{\beta} \varphi - \partial_{\beta} \varphi^* \, \varphi) + e^2 \, g^{\alpha\beta} \, a_{\alpha} a_{\beta} |\varphi|^2 - \frac{g_4}{4} \, |\varphi|^4 \right)$$

Terms involved:

$$\mathcal{I}_{\{N\}}^{[\nu]} = \int_{-\infty}^{+\infty} du \, |\Delta u| u^{\nu} \prod_{i=1}^{N} \widetilde{\Phi}_{\{k_{+(i)}, \, l_{(i)}, \, \vec{k}_{(i)}, \, r_{(i)}\}}(u)$$

$$\mathcal{J}_{\{N\}}^{[\nu]} = \int_{-\infty}^{+\infty} du \, |\Delta| |u|^{1+\nu} \prod_{i=1}^{N} \widetilde{\Phi}_{\{k_{+(i)}, \, l_{(i)}, \, \vec{k}_{(i)}, \, r_{(i)}\}}(u)$$

Scalar QED Interactions

Scalar-photon interactions:

$$S_{\mathsf{sQED}}^{(\mathsf{int})} = \int\limits_{\Omega} \mathrm{d}^D x \, \sqrt{-g} \left(-i \, e \, g^{\alpha\beta} \, a_\alpha (\varphi^* \, \partial_\beta \varphi - \partial_\beta \varphi^* \, \varphi) + e^2 \, g^{\alpha\beta} \, a_\alpha a_\beta |\varphi|^2 - \frac{g_4}{4} \, |\varphi|^4 \right)$$

Terms involved:

$$\mathcal{I}_{\{N\}}^{[\nu]} = \int_{-\infty}^{+\infty} du \, |\Delta u| u^{\nu} \prod_{i=1}^{N} \widetilde{\Phi}_{\{k_{+(i)}, l_{(i)}, \vec{k}_{(i)}, r_{(i)}\}}(u)$$

$$\mathcal{J}_{\{N\}}^{[\nu]} = \int_{-\infty}^{+\infty} du \, |\Delta| |u|^{1+\nu} \prod_{i=1}^{N} \widetilde{\Phi}_{\{k_{+(i)}, l_{(i)}, \vec{k}_{(i)}, r_{(i)}\}}(u)$$

most terms do not converge and cannot be recovered even with a distributional interpretions due to the term $\propto u^{-1}$ in the exponentatial

So far:

• field theory presents divergences

So far:

- field theory presents divergences
- issues are **still present** in sQED (eikonal?)

So far:

- field theory presents divergences
- issues are **still present** in sQED (eikonal?)
- divergences are not (only) gravitational

So far:

- field theory presents divergences
- issues are **still present** in sQED (eikonal?)
- divergences are not (only) gravitational

Massive String States

$$V_{M}(x; k, S, \xi) = : \left(\frac{i}{\sqrt{2\alpha'}} \xi \cdot \partial_{x}^{2} X(x, x) + \left(\frac{i}{\sqrt{2\alpha'}}\right)^{2} S_{\alpha\beta} \partial_{x} X^{\alpha}(x, x) \partial_{x} X^{\beta}(x, x)\right) e^{ik \cdot X(x, x)} :$$

So far:

- field theory presents divergences
- issues are **still present** in sQED (eikonal?)
- divergences are not (only) gravitational

Massive String States

$$V_{M}(x; k, S, \xi) = : \left(\frac{i}{\sqrt{2\alpha'}} \xi \cdot \partial_{x}^{2} X(x, x) + \left(\frac{i}{\sqrt{2\alpha'}}\right)^{2} S_{\alpha\beta} \partial_{x} X^{\alpha}(x, x) \partial_{x} X^{\beta}(x, x)\right) e^{ik \cdot X(x, x)} :$$

string theory cannot do **better than field theory** (EFT) if the latter **does not exist** (even a Wilson line around z does not prevent such behaviour)

Resolution and Motivation

Introduce the generalised NBO:

$$\begin{cases} u = x^{-} \\ z = \frac{1}{2x^{-}} \left(\frac{x^{2}}{\Delta_{2}} + \frac{x^{3}}{\Delta_{3}} \right) \\ w = \frac{1}{2x^{-}} \left(\frac{x^{2}}{\Delta_{2}} - \frac{x^{3}}{\Delta_{3}} \right) \\ v = x^{+} - \frac{1}{2x^{-}} \left((x^{2})^{2} + (x^{3})^{2} \right) \end{cases} \Rightarrow \kappa = -2\pi i (\Delta_{2}J_{+2} + \Delta_{3}J_{+3}) = 2\pi \partial_{z}$$

Resolution and Motivation

Introduce the generalised NBO:

$$\begin{cases} u = x^{-} \\ z = \frac{1}{2x^{-}} \left(\frac{x^{2}}{\Delta_{2}} + \frac{x^{3}}{\Delta_{3}} \right) \\ w = \frac{1}{2x^{-}} \left(\frac{x^{2}}{\Delta_{2}} - \frac{x^{3}}{\Delta_{3}} \right) \\ v = x^{+} - \frac{1}{2x^{-}} \left(\left(x^{2} \right)^{2} + \left(x^{3} \right)^{2} \right) \end{cases} \Rightarrow \kappa = -2\pi i \left(\Delta_{2} J_{+2} + \Delta_{3} J_{+3} \right) = 2\pi \partial_{z}$$

Distributional Interpretation

$$\widetilde{\Phi}_{\{k_{+}, p, l, \vec{k}, r\}}(u) = \frac{1}{2\sqrt{(2\pi)^{D}|\Delta_{2}\Delta_{3}k_{+}|}} \frac{1}{|u|} e^{-i\left(\frac{1}{8k_{+}u}\left[\frac{(l+p)^{2}}{\Delta_{2}^{2}} + \frac{(l-p)^{2}}{\Delta_{3}^{2}}\right] - \frac{\|\vec{k}\|^{2} + r}{2k_{+}}u\right)}$$

• divergences are present in sQED and open string sector

- divergences are present in sQED and open string sector
- singularities \Rightarrow massive states are no longer spectators

- divergences are present in sQED and open string sector
- singularities \Rightarrow massive states are no longer spectators
- vanishing volume (compact orbifold directions) ⇒ particles "cannot escape"

- divergences are present in sQED and open string sector
- singularities ⇒ massive states are no longer spectators
- vanishing volume (compact orbifold directions) \Rightarrow particles "cannot escape"
- non compact orbifold directions ⇒ interpretation of amplitudes as distributions

- divergences are present in sQED and open string sector
- singularities ⇒ massive states are no longer spectators
- vanishing volume (compact orbifold directions) ⇒ particles "cannot escape"
- non compact orbifold directions ⇒ interpretation of amplitudes as distributions
- issue not restricted to NBO/GNBO but also BO, null brane, etc. (it is a **general issues** connected to the geometry of the underlying space)

- divergences are present in sQED and open string sector
- singularities ⇒ massive states are no longer spectators
- vanishing volume (compact orbifold directions) ⇒ particles "cannot escape"
- non compact orbifold directions ⇒ interpretation of amplitudes as distributions
- issue not restricted to NBO/GNBO but also BO, null brane, etc. (it is a **general issues** connected to the geometry of the underlying space)

spacetime singularities are **hidden into contact terms** and interactions with **massive states**(the gravitational eikonal deals with massless interactions)

Contents

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Concepts and Tools
D-branes Intersecting at Angles
Fermions and Point-like Defect CFT

Cosmological Backgrounds and Divergences

Orbifolds and Cosmological Toy Models
Null Boost Orbifold

Deep Learning the Geometry of String Theory

Machine Learning and Deep Learning
Machine Learning for String Theory
Al Implementations for Geometry and Strings

The Simplest Calabi-Yau

Focus on Calabi–Yau 3-folds:

$$h^{r,s} = \dim_{\mathbb{C}} H^{r,s}_{\overline{\partial}}(M, \mathbb{C})$$
 \Rightarrow
$$\begin{cases} h^{0,0} & = h^{3,0} = 1 \\ h^{r,0} & = 0 \text{ if } r \neq 3 \\ h^{r,s} & = h^{3-r,3-s} \\ h^{1,1}, h^{2,1} \in \mathbb{N} \end{cases}$$

The Simplest Calabi-Yau

Focus on Calabi-Yau 3-folds:

$$h^{r,\,s} = \dim_{\mathbb{C}} H^{r,\,s}_{\overline{\partial}}(M,\,\mathbb{C})$$
 \Rightarrow
$$\begin{cases} h^{0,\,0} &= h^{3,\,0} = 1 \\ h^{r,\,0} &= 0 & \text{if } r \neq 3 \\ h^{r,\,s} &= h^{3-r,\,3-s} \\ h^{1,\,1}, h^{2,\,1} \in \mathbb{N} \end{cases}$$

Complete Intersection Calabi-Yau Manifolds

Intersection of hypersurfaces in

$$\mathcal{A} = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_m}$$

where

$$\mathbb{P}^n: \begin{cases} p_{\mathfrak{a}}(Z^0, \ldots, Z^n) &= P_{I_1 \ldots I_{\mathfrak{a}}} Z^{I_1} \ldots Z^{I_{\mathfrak{a}}} = 0 \\ p_{\mathfrak{a}}(\lambda Z^0, \ldots, \lambda Z^n) &= \lambda^{\mathfrak{a}} p_{\mathfrak{a}}(Z^0, \ldots, Z^n) \end{cases}$$

Representation of the Output

CICY can be generalised to m projective spaces and k equations. The problem is thus mapped to:

 \mathscr{R} : $\mathbb{Z}^{m \times k}$

$$\begin{bmatrix} \mathbb{P}^{n_1} & a_1^1 & \dots & a_k^1 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{P}^{n_m} & a_1^m & \dots & a_k^m \end{bmatrix} \longrightarrow h^{1,1} \text{ or } h^{2,1}$$

Representation of the Output

CICY can be generalised to m projective spaces and k equations. The problem is thus mapped to:

 \mathscr{R} :

$$\begin{bmatrix} \mathbb{P}^{n_1} & a_1^1 & \dots & a_k^1 \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{P}^{n_m} & a_1^m & \dots & a_k^m \end{bmatrix} \longrightarrow h^{1,1} \text{ or } h^{2,1}$$

Machine Learning Approach

What is 92?

$$\mathscr{R}(M) \longrightarrow \mathscr{R}_n(M; w)$$

$$\mathscr{R}(M) \longrightarrow \mathscr{R}_n(M; w)$$
 s.t. $\lim_{n \to \infty} f(M; w) = \lim_{n \to \infty} |\mathscr{R}(M) - \mathscr{R}_n(M; w)| = 0$

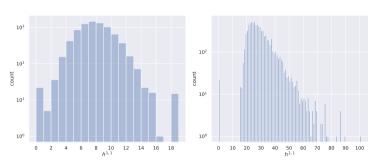
• exchange analytical solution with optimisation problem

- exchange analytical solution with optimisation problem
- use various algorithms and exploit large datasets

- exchange analytical solution with optimisation problem
- use various algorithms and exploit large datasets
- learn a representation rather than a solution

- exchange analytical solution with optimisation problem
- use various algorithms and exploit large datasets
- learn a representation rather than a solution
- effectively use knowledge from computer science, mathematics and physics to solve problems

- exchange analytical solution with optimisation problem
- use various algorithms and exploit large datasets
- learn a representation rather than a solution
- effectively use knowledge from **computer science**, **mathematics and physics** to solve problems



Exploratory Data Analysis

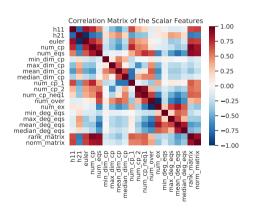
Machine Learning pipeline:

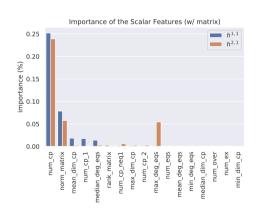
exploratory data analysis \rightarrow feature **selection** \rightarrow Hodge numbers

Exploratory Data Analysis

Machine Learning pipeline:

exploratory data analysis \rightarrow feature **selection** \rightarrow Hodge numbers





• 7890 CICY manifolds (full dataset)

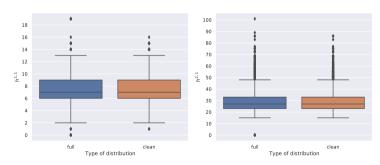
- 7890 CICY manifolds (full dataset)
- dataset pruning: no product spaces, no "very far" outliers (reduction of 0.49%)

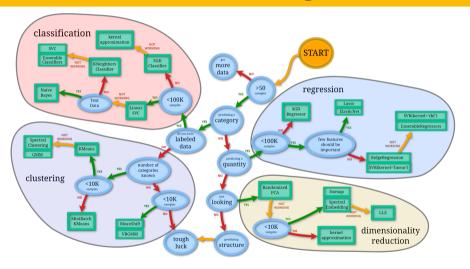
- 7890 CICY manifolds (full dataset)
- dataset pruning: no product spaces, no "very far" outliers (reduction of 0.49%)
- $h^{1,1} \in [1, 16]$ and $h^{2,1} \in [15, 86]$

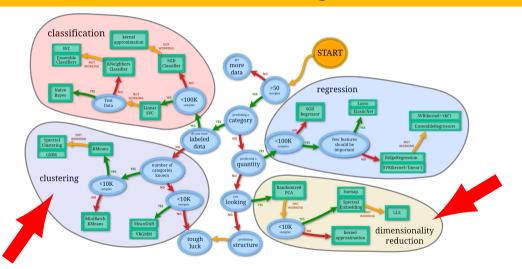
- 7890 CICY manifolds (full dataset)
- dataset pruning: no product spaces, no "very far" outliers (reduction of 0.49%)
- $h^{1,1} \in [1, 16]$ and $h^{2,1} \in [15, 86]$
- 80% training, 10% validation, 10% test

- 7890 CICY manifolds (full dataset)
- dataset pruning: no product spaces, no "very far" outliers (reduction of 0.49%)
- $h^{1,1} \in [1, 16]$ and $h^{2,1} \in [15, 86]$
- 80% training, 10% validation, 10% test
- choose **regression**, but evaluate using **accuracy** (round the result)

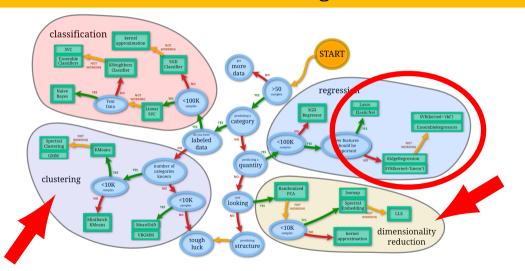
- 7890 CICY manifolds (full dataset)
- dataset pruning: no product spaces, no "very far" outliers (reduction of 0.49%)
- $h^{1,1} \in [1, 16]$ and $h^{2,1} \in [15, 86]$
- 80% training, 10% validation, 10% test
- choose regression, but evaluate using accuracy (round the result)







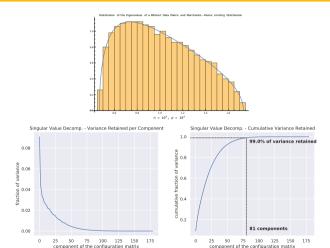
Machine Learning



A Word on PCA

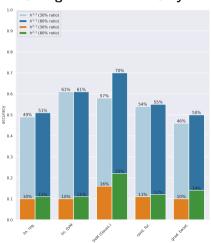
What is PCA for a $X \in \mathbb{R}^{n \times p}$?

- find new coordinates to "put the variance in order"
- equivalently compute the eigenvectors of XX^T or the singular values of X
- isolate the signal from the background
- ease the machine learning job of finding a better representation of the input



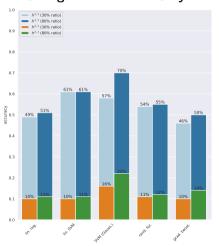
Machine Learning Results

Configuration Matrix Only

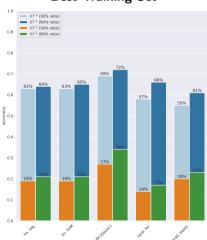


Machine Learning Results

Configuration Matrix Only



Best Training Set



Artificial Intelligence and Neural Networks

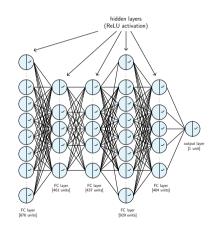
- use gradient descent to optimise weights
- learn highly **non linear** representations of the input
- can be "large" to have enough parameters
- can be "deep" to to learn complicated functions

Neural Networks

fully connected: $a^{(i) \{l+1\}} = \phi(a^{(i) \{l\}} \cdot W^{\{l\}} + b^{\{l\}} \mathbb{1})$ convolutional: $a^{(i) \{l+1\}} = \phi(a^{(i) \{l\}} * W^{\{l\}} + b^{\{l\}} \mathbb{1})$

Non linearity ensured by:

$$\phi(z) = \operatorname{ReLU}(z) = \max(0, z)$$

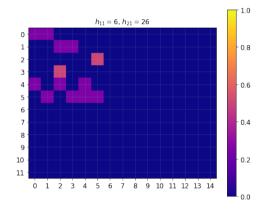


Why convolutional?

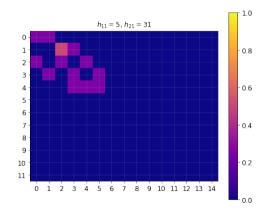
• retain spacial awareness



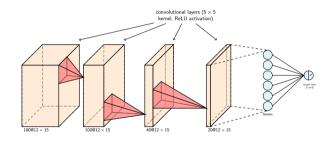
- retain spacial awareness
- smaller no. of parameters $(\approx 2 \times 10^5 \text{ vs.} \approx 2 \times 10^6)$



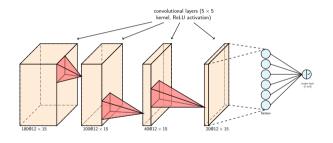
- retain spacial awareness
- smaller no. of parameters $(\approx 2 \times 10^5 \text{ vs.} \approx 2 \times 10^6)$
- weights are shared



- retain spacial awareness
- smaller no. of parameters $(\approx 2 \times 10^5 \text{ vs.} \approx 2 \times 10^6)$
- weights are shared
- CNN can isolate "defining features"



- retain spacial awareness
- smaller no. of parameters $(\approx 2 \times 10^5 \text{ vs.} \approx 2 \times 10^6)$
- weights are shared
- CNN can isolate "defining features"
- find patterns as in computer vision



Inception Neural Networks

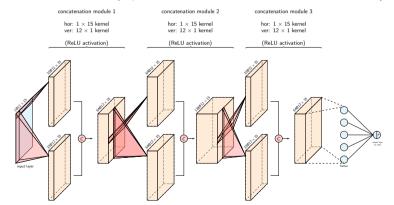
Recent development by Google's deep learning teams led to:

- neural networks with **better generalisation properties**
- smaller networks (both parameters and depth)
- different concurrent kernels (e.g. one over equations one over coordinates)

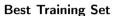
Inception Neural Networks

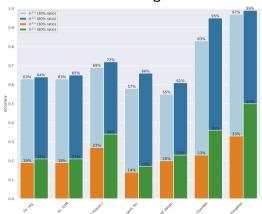
Recent development by Google's deep learning teams led to:

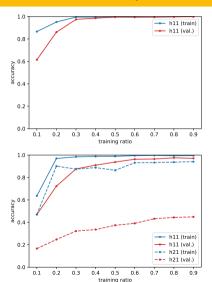
- neural networks with **better generalisation properties**
- smaller networks (both parameters and depth)
- different concurrent kernels (e.g. one over equations one over coordinates)



Deep Learning Results and Generalisation Properties







Why deep learning in physics?

• reliable predictive method

Why deep learning in physics?

• reliable **predictive method** (provided good data analysis)

- reliable **predictive method** (provided good data analysis)
- reliable source of inspiration

- reliable **predictive method** (provided good data analysis)
- reliable source of inspiration (provided good data analysis)

- reliable predictive method (provided good data analysis)
- reliable source of inspiration (provided good data analysis)
- reliable generalisation method

- reliable **predictive method** (provided good data analysis)
- reliable source of inspiration (provided good data analysis)
- reliable generalisation method (provided good data analysis)

- reliable **predictive method** (provided good data analysis)
- reliable source of inspiration (provided good data analysis)
- reliable generalisation method (provided good data analysis)
- CNNs are powerful tools (this is the first time in physics!)

- reliable predictive method (provided good data analysis)
- reliable source of inspiration (provided good data analysis)
- reliable generalisation method (provided good data analysis)
- CNNs are powerful tools (this is the first time in physics!)
- interdisciplinary approach = win-win situation!

Why deep learning in physics?

- reliable **predictive method** (provided good data analysis)
- reliable source of inspiration (provided good data analysis)
- reliable generalisation method (provided good data analysis)
- CNNs are powerful tools (this is the first time in physics!)
- interdisciplinary approach = win-win situation!

What now?

representation learning ⇒ what is the best way to represent CICYs?

Why deep learning in physics?

- reliable predictive method (provided good data analysis)
- reliable source of inspiration (provided good data analysis)
- reliable generalisation method (provided good data analysis)
- CNNs are powerful tools (this is the first time in physics!)
- interdisciplinary approach = win-win situation!

- representation learning ⇒ what is the best way to represent CICYs?
- study invariances ⇒ invariances should not influence the result (graph representations?)

Why deep learning in physics?

- reliable **predictive method** (provided good data analysis)
- reliable source of inspiration (provided good data analysis)
- reliable generalisation method (provided good data analysis)
- CNNs are powerful tools (this is the first time in physics!)
- interdisciplinary approach = win-win situation!

- representation learning ⇒ what is the best way to represent CICYs?
- study invariances ⇒ invariances should not influence the result (graph representations?)
- higher dimensions ⇒ what about CICY 4-folds?

Why deep learning in physics?

- reliable predictive method (provided good data analysis)
- reliable source of inspiration (provided good data analysis)
- reliable generalisation method (provided good data analysis)
- CNNs are powerful tools (this is the first time in physics!)
- interdisciplinary approach = win-win situation!

- representation learning ⇒ what is the best way to represent CICYs?
- study invariances ⇒ invariances should not influence the result (graph representations?)
- higher dimensions ⇒ what about CICY 4-folds?
- geometric deep learning ⇒ explain the geometry of the "AI" behind deep learning!

Why deep learning in physics?

- reliable **predictive method** (provided good data analysis)
- reliable source of inspiration (provided good data analysis)
- reliable generalisation method (provided good data analysis)
- CNNs are powerful tools (this is the first time in physics!)
- interdisciplinary approach = win-win situation!

- representation learning ⇒ what is the best way to represent CICYs?
- study invariances ⇒ invariances should not influence the result (graph representations?)
- higher dimensions ⇒ what about CICY 4-folds?
- geometric deep learning ⇒ explain the geometry of the "Al" behind deep learning!
- reinforcement learning ⇒ give the rules, not the result!

The End?

