\documentclass[10pt, aspectratio=169]{beamer} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[british]{babel} \usepackage{csquotes} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{mathrsfs} \usepackage{dsfont} \usepackage{upgreek} \usepackage{physics} \usepackage{tensor} \usepackage{graphicx} \usepackage{transparent} \usepackage{tikz} \usepackage{import} \usepackage{booktabs} \usepackage{multicol} \usepackage{multirow} \usepackage{bookmark} \usepackage{xspace} \usetheme{Singapore} \usecolortheme{crane} \usefonttheme{structurebold} \setbeamertemplate{navigation symbols}{} \author[Finotello]{Riccardo Finotello} \title[D-branes and Deep Learning]{D-branes and Deep Learning} \subtitle{Theoretical and Computational Aspects in String Theory} \institute[UniTO]{% Scuola di Dottorato in Fisica e Astrofisica \\[0.5em] Università degli Studi di Torino \\ and \\ I.N.F.N.\ -- sezione di Torino } \date{15th December 2020} \newcommand{\firstlogo}{img/unito} \newcommand{\thefirstlogo}{% \begin{figure} \centering \includegraphics[width=5em]{\firstlogo} \end{figure} } \newcommand{\secondlogo}{img/infn} \newcommand{\thesecondlogo}{% \begin{figure} \centering \includegraphics[width=5em]{\secondlogo} \end{figure} } \setbeamertemplate{title page}{% \begin{center} {% \usebeamercolor{title} \usebeamerfont{title} \colorbox{bg}{% {\Huge \inserttitle}\xspace } \vspace{0.5em} }\par {% \usebeamercolor{subtitle} \usebeamerfont{subtitle} {\large \it \insertsubtitle}\xspace \vspace{2em} }\par {% \usebeamercolor{author} \usebeamerfont{author} {\Large \insertauthor}\xspace \vspace{1em} }\par {% \begin{columns} \centering \begin{column}{0.3\linewidth} \centering \thefirstlogo \end{column} \begin{column}{0.4\linewidth} \centering \usebeamercolor{institute} \usebeamerfont{institute} \insertinstitute{} \\[1em] \insertdate{} \end{column} \begin{column}{0.3\linewidth} \centering \thesecondlogo \end{column} \end{columns} }\par \end{center} } \setbeamertemplate{footline}{% \usebeamerfont{footnote} \usebeamercolor{footnote} \hfill \insertframenumber{}~/~\inserttotalframenumber{} \hspace{1em} \vspace{1em} \par } \AtBeginSection[] {% {% \setbeamertemplate{footline}{} \begin{frame}[noframenumbering]{\contentsname} \tableofcontents[currentsection] \end{frame} } } \begin{document} {% \usebackgroundtemplate{% \transparent{0.1} \includegraphics[width=\paperwidth]{img/torino.png} } \begin{frame}[noframenumbering, plain] \titlepage{} \end{frame} } {% \setbeamertemplate{footline}{} \begin{frame}[noframenumbering]{\contentsname} \tableofcontents{} \end{frame} } \section[CFT]{Conformal Symmetry and Geometry of the Worldsheet} \begin{frame}{Action Principle and Conformal Symmetry} \begin{block}{Polyakov's Action} \begin{equation*} S_P\qty[ \upgamma,\, X,\, \uppsi ] = -\frac{1}{4\pi} \int\limits_{-\infty}^{+\infty} \dd{\uptau} \int\limits_0^{\ell} \dd{\upsigma} \sqrt{-\det \upgamma}\, \upgamma^{\upalpha \upbeta}\, \qty(% \frac{2}{\alpha'}\, \partial_{\upalpha} X^{\upmu}\, \partial_{\upbeta} X^{\upnu} + \uppsi^{\upmu}\, \uprho_{\upalpha} \partial_{\upbeta} \uppsi^{\upnu} )\, \upeta_{\upmu\upnu} \end{equation*} \end{block} \begin{columns} \begin{column}[t]{0.5\linewidth} Symmetries: \begin{itemize} \item Poincaré transf.\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$ \item 2D diff.\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \gamma_{\uplambda \uprho}$ \item Weyl transf.\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \gamma_{\upalpha \upbeta}$ \end{itemize} \end{column} \begin{column}[t]{0.5\linewidth} Conformal symmetry: \begin{itemize} \item vanishing stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$ \item traceless stress-energy tensor: $\trace{\mathcal{T}} = 0$ \item conformal gauge $\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$ \end{itemize} \end{column} \end{columns} \end{frame} \begin{frame}{Action Principle and Conformal Symmetry} \begin{columns} \begin{column}{0.6\linewidth} Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$: \begin{equation*} T( z )\, \Upphi_{\upomega}( w ) \stackrel{z \to w}{\sim} \frac{\upomega}{(z - w)^2} \Upphi_{\upomega}( w ) + \frac{1}{z - w} \partial_w \Upphi_{\upomega}( w ) \end{equation*} \end{column} \begin{column}{0.4\linewidth} \begin{figure}[h] \centering \resizebox{0.8\columnwidth}{!}{\import{img}{complex_plane.pgf}} \end{figure} \end{column} \end{columns} \end{frame} \subsection[Tools]{Preliminary Tools and Definitions} \begin{frame}{AAA} a1 \end{frame} \subsection[D-branes]{D-branes Intersecting at Angles} \begin{frame}{AAA} a2 \end{frame} \subsection[Fermions]{Fermions With Boundary Defects} \begin{frame}{AAA} a3 \end{frame} \section[Time Divergences]{Cosmological Backgrounds and Divergences} \begin{frame}{BBB} b \end{frame} \subsection[Orbifolds]{Orbifolds and Cosmological Models} \begin{frame}{BBB} b1 \end{frame} \subsection[Time Dependency]{Time Dependent Orbifolds} \begin{frame}{BBB} b2 \end{frame} \section[Deep Learning]{Deep Learning the Geometry of String Theory} \begin{frame}{CCC} c \end{frame} \subsection[CICY]{Complete Intersection Calabi--Yau Manifolds} \begin{frame}{CCC} c1 \end{frame} \subsection[Machine Learning]{Machine Learning and Deep Learning for CICY Manifolds} \begin{frame}{CCC} c2 \end{frame} \end{document}