D-branes and Deep Learning

Theoretical and Computational Aspects in String Theory

Riccardo Finotello

Scuola di Dottorato in Fisica e Astrofisica Università degli Studi di Torino and I.N.F.N. – sezione di Torino

15th December 2020

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Tools and Definitions D-branes Intersecting at Angles Fermions With Boundary Defects

Cosmological Backgrounds and Divergences

Orbifolds and Cosmological Models Time Dependent Orbifolds

Deep Learning the Geometry of String Theory

Complete Intersection Calabi–Yau Manifolds Machine Learning and Deep Learning for CICY Manifolds

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Tools and Definitions D-branes Intersecting at Angles Fermions With Boundary Defects

Cosmological Backgrounds and Divergences

Deep Learning the Geometry of String Theory

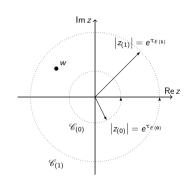
Action Principle and Conformal Symmetry

Polyakov's Action

$$S_P[\gamma,X,\psi] = -rac{1}{4\pi}\int\limits_{-\infty}^{+\infty}\mathrm{d} au\int\limits_{0}^{\ell}\mathrm{d}\sigma\sqrt{-\det\gamma}\gamma^{lphaeta}\left(rac{2}{lpha'}\,\partial_lpha X^\mu\,\partial_eta X^
u + \psi^\mu\,
ho_lpha\partial_eta\psi^
u
ight)\eta_{\mu
u}$$

Symmetries:

- Poincaré transf. $X'^{\mu} = \Lambda^{\mu}_{\ \nu} X^{\nu} + c^{\mu}$
- 2D diff. $\gamma'_{\alpha\beta} = \left(J^{-1}\right)_{\alpha\beta}^{\quad \lambda\rho} \gamma_{\lambda\rho}$
- Weyl transf. $\gamma'_{\alpha\beta} = e^{2\omega} \gamma_{\alpha\beta}$


Conformal symmetry:

- vanishing stress-energy tensor: $\mathcal{T}_{\alpha\beta}=0$
- ullet traceless stress-energy tensor: ${\sf tr}\, {\cal T}=0$
- conformal gauge $\gamma_{\alpha\beta}=e^{\varphi}\,\eta_{\alpha\beta}$

Action Principle and Conformal Symmetry

Let
$$z = e^{\tau_E + i\sigma} \Rightarrow \overline{\partial} \mathcal{T}(z) = \partial \overline{\mathcal{T}}(\overline{z}) = 0$$
:

$$T(z) \Phi_{\omega}(w) \stackrel{z \to w}{\sim} \frac{\omega}{(z-w)^2} \Phi_{\omega}(w) + \frac{1}{z-w} \partial_w \Phi_{\omega}(w)$$

AAA

a1

AAA

a2

AAA

a3

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Tools and Definitions
D-branes Intersecting at Angles
Fermions With Boundary Defects

Cosmological Backgrounds and Divergences

Orbifolds and Cosmological Models Time Dependent Orbifolds

Deep Learning the Geometry of String Theory

Complete Intersection Calabi–Yau Manifolds

Machine Learning and Deep Learning for CICY Manifolds

BBB

b

BBB

b1

BBB

b2

Conformal Symmetry and Geometry of the Worldsheet

Preliminary Tools and Definitions D-branes Intersecting at Angles Fermions With Boundary Defects

Cosmological Backgrounds and Divergences

Orbifolds and Cosmological Models Time Dependent Orbifolds

Deep Learning the Geometry of String Theory

Complete Intersection Calabi–Yau Manifolds Machine Learning and Deep Learning for CICY Manifolds

CCC

С

Time Divergences

Deep Learning

CCC

c1

CCC

c2