% !TeX root = thesis.tex % !TeX program = xelatex \documentclass[10pt, aspectratio=169, compress]{beamer} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage[british]{babel} \usepackage{csquotes} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{mathrsfs} \usepackage{dsfont} \usepackage{upgreek} \usepackage{physics} \usepackage{tensor} \usepackage{animate} \usepackage{graphicx} \usepackage{tikz} \usepackage{import} \usepackage{booktabs} \usepackage{multicol} \usepackage{multirow} \usepackage{bookmark} \usepackage{xspace} \usetheme{Singapore} \usecolortheme{crane} \usefonttheme{structurebold} \setbeamertemplate{navigation symbols}{} \addtobeamertemplate{background canvas}{\transfade[duration=0.15]}{} \author[Finotello]{Riccardo Finotello} \title[D-branes and Deep Learning]{D-branes and Deep Learning} \subtitle{Theoretical and Computational Aspects in String Theory} \institute[UniTO]{% Scuola di Dottorato in Fisica e Astrofisica \\[0.5em] Università degli Studi di Torino \\ and \\ I.N.F.N.\ -- sezione di Torino } \date{18th December 2020} \usetikzlibrary{decorations.markings} \usetikzlibrary{decorations.pathmorphing} \usetikzlibrary{decorations.pathreplacing} \usetikzlibrary{arrows} \usetikzlibrary{patterns} \newenvironment{equationblock}[1]{% \begin{block}{#1} \vspace*{-0.75\baselineskip}\setlength\belowdisplayshortskip{0.25\baselineskip} }{% \end{block} } \newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}} \renewcommand{\cite}[1]{{\tiny{\fcolorbox{red}{red!10}{[#1]}}}} \newcommand{\firstlogo}{img/unito.png} \newcommand{\thefirstlogo}{% \begin{figure} \centering \includegraphics[width=7em]{\firstlogo} \end{figure} } \newcommand{\secondlogo}{img/infn.pdf} \newcommand{\thesecondlogo}{% \begin{figure} \centering \includegraphics[width=7em]{\secondlogo} \end{figure} } \setbeamertemplate{title page}{% \begin{center} {% \usebeamercolor{title} \usebeamerfont{title} \colorbox{bg}{% {\Huge \inserttitle}\xspace } \vspace{0.5em} }\par {% \usebeamercolor{subtitle} \usebeamerfont{subtitle} {\large \it \insertsubtitle}\xspace \vspace{2em} }\par {% \usebeamercolor{author} \usebeamerfont{author} {\Large \insertauthor}\xspace \vspace{1em} }\par {% \begin{columns} \centering \begin{column}{0.3\linewidth} \centering \thefirstlogo \end{column} \begin{column}{0.4\linewidth} \centering \usebeamercolor{institute} \usebeamerfont{institute} \insertinstitute{} \\[1em] \insertdate{} \end{column} \begin{column}{0.3\linewidth} \centering \thesecondlogo \end{column} \end{columns} }\par \end{center} } \setbeamertemplate{footline}{% \usebeamerfont{footnote} \usebeamercolor{footnote} \hfill \insertframenumber{}~/~\inserttotalframenumber{} \hspace{1em} \vspace{1em} \par } \AtBeginSection[] {% {% \setbeamertemplate{footline}{} \usebackgroundtemplate{% \tikz\node[opacity=0.1]{\includegraphics[width=\paperwidth]{img/torino.png}}; } \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} \begin{frame}[noframenumbering]{\contentsname} \tableofcontents[currentsection] \end{frame} } } \begin{document} {% \usebackgroundtemplate{% \tikz\node[opacity=0.1]{\includegraphics[width=\paperwidth]{img/torino.png}}; } \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} \begin{frame}[noframenumbering, plain] \titlepage{} \end{frame} } {% \setbeamertemplate{footline}{} \usebackgroundtemplate{% \tikz\node[opacity=0.1]{\includegraphics[width=\paperwidth]{img/torino.png}}; } \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} \begin{frame}[noframenumbering]{\contentsname} \tableofcontents{} \end{frame} } \section[CFT]{Conformal Symmetry and Geometry of the Worldsheet} \subsection[Preliminary]{Preliminary Concepts and Tools} \begin{frame}{Action Principle and Conformal Symmetry} \begin{equationblock}{Polyakov's Action} \begin{equation*} S_P\qty[ \upgamma,\, X,\, \uppsi ] = -\frac{1}{4\uppi} \int\limits_{-\infty}^{+\infty} \dd{\uptau} \int\limits_0^{\ell} \dd{\upsigma} \sqrt{-\det \upgamma}\, \upgamma^{\upalpha \upbeta}\, \qty(% \frac{2}{\upalpha'}\, \partial_{\upalpha} X^{\upmu}\, \partial_{\upbeta} X^{\upnu} + \uppsi^{\upmu}\, \uprho_{\upalpha} \partial_{\upbeta} \uppsi^{\upnu} )\, \upeta_{\upmu\upnu} \end{equation*} \end{equationblock} \pause \begin{columns}[T, totalwidth=0.935\linewidth] \begin{column}{0.45\linewidth} \begin{tabular}{@{}ll@{}} Symmetries: & \\ \toprule \textbf{Poincaré transf.}: & $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$ \\ \textbf{2D diff.}: & $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \upgamma_{\uplambda \uprho}$ \\ \textbf{Weyl transf.}: & $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \upgamma_{\upalpha \upbeta}$ \\ \end{tabular} \end{column} \hfill \begin{column}{0.45\linewidth} \begin{tabular}{@{}ll@{}} Conformal symmetry: & \\ \toprule \textbf{vanishing} stress-energy tensor: & $\mathcal{T}_{\upalpha \upbeta} = 0$ \\ \textbf{traceless} stress-energy tensor: & $\trace{\mathcal{T}} = 0$ \\ \textbf{conformal gauge}: & $\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$ \\ \end{tabular} \end{column} \end{columns} \end{frame} \begin{frame}{Action Principle and Conformal Symmetry} Superstrings in $D$ dimensions $\longrightarrow$ \emph{Virasoro algebra} (central extension of de Witt's algebra): \begin{equation*} \mathcal{T}( z ) = -\frac{1}{\upalpha'} \partial X( z ) \cdot \partial X( z ) -\frac{1}{2} \uppsi( z ) \cdot \partial \uppsi( z ) \quad \Rightarrow \quad c = \frac{3}{2} D \end{equation*} \pause \begin{block}{$\qty( \uplambda, 0 )~/~\qty( 1 - \uplambda, 0 )$ Ghost System} Introduce anti-commuting $\qty( b,\, c )$ and commuting $\qty( \upbeta,\, \upgamma )$ conformal fields: \begin{equation*} S_{\text{ghost}}\qty[ b,\, c,\, \upbeta,\, \upgamma ] = \frac{1}{2\uppi} \iint \dd{z} \dd{\overline{z}} \qty(% b( z )\, \overline{\partial} c( z ) + \upbeta( z )\, \overline{\partial} \upgamma( z ) ) \end{equation*} where $\uplambda_b = 2$ and $\uplambda_c = -1$, and $\uplambda_{\upbeta} = \frac{3}{2}$ and $\uplambda_{\upgamma} = -\frac{1}{2}$. \hfill \cite{Friedan, Martinec, Shenker (1986)} \end{block} \pause Consequence: \begin{equation*} c_{\text{full}} = c + c_{\text{ghost}} = 0 \quad \Leftrightarrow \quad D = 10. \end{equation*} \end{frame} \begin{frame}{Extra Dimensions and Compactification} \begin{block}{Compactification} \begin{columns}[T, totalwidth=0.95\linewidth] \begin{column}{0.8\linewidth} \begin{equation*} \mathscr{M}^{1,\, 9} = \mathscr{M}^{1,\, 3} \otimes \mathscr{X}_6 \end{equation*} \vspace{-1em} \begin{itemize} \item $\mathscr{X}_6$ is a \textbf{compact} manifold \item $N = 1$ \textbf{supersymmetry} preserved in 4D \item contains algebra of $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ \end{itemize} \end{column} \begin{tikzpicture}[remember picture, overlay] \node[anchor=base] at (-2em,-6em) {\cite{code in Hanson (1994)}}; \node[anchor=base] at (-7em,-6em) {\includegraphics[width=0.25\linewidth]{img/cy.png}}; \end{tikzpicture} \end{columns} \end{block} \pause \vfill \begin{columns}[T, totalwidth=0.95\linewidth] \begin{column}{0.55\linewidth} \textbf{Calabi--Yau manifolds} $\qty( M,\, g )$ such that: \begin{itemize} \item $\dim\limits_{\mathds{C}} M = m$ \item $\mathrm{Hol}( g ) \subseteq \mathrm{SU}( m )$ \item $\mathrm{Ric}( g ) \equiv 0$ (equiv.\ $c_1\qty( M ) \equiv 0$) \end{itemize} \hspace{1em}\cite{Calabi (1957), Yau (1977), Candelas \emph{et al.} (1985)} \end{column} \hfill \pause \begin{column}{0.4\linewidth} Characterised by \textbf{Hodge numbers} \begin{equation*} h^{r,\,s} = \dim\limits_{\mathds{C}} H_{\overline{\partial}}^{r,\,s}\qty( M,\, \mathds{C} ) \end{equation*} (no.\ of harmonic $(r,s)$-forms). \end{column} \end{columns} \end{frame} \begin{frame}{D-branes and Open Strings} Polyakov's action naturally introduces \textbf{Neumann b.c.}: \begin{equation*} \eval{\partial_{\upsigma} X\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 \end{equation*} satisfied by \highlight{\textbf{open and closed strings} in $D$ dim.} s.t.\ $\square X = 0 \Rightarrow X( z, \overline{z} ) = X( z ) + \overline{X}( \overline{z} )$. \pause % \begin{equationblock}{Equivalent Theories of Closed String Compactification} % \begin{equation*} % X( z, \overline{z} ) % = % X( z ) + \overline{X}( \overline{z} ) % \quad % \stackrel{T-dual}{\Rightarrow} % \quad % X( z ) - \overline{X}( \overline{z} ) % = % Y( z, \overline{z} ) % = % Y( z ) + \overline{Y}( \overline{z} ) % \end{equation*} % \end{equationblock} % \pause \begin{block}{T-duality} \only<2>{% Consider \textbf{closed strings} on $\mathscr{M}^{1,D-1} = \mathscr{M}^{1,D-2} \otimes \mathrm{S}^1( R )$: \begin{equation*} \begin{split} \begin{cases} \upalpha_0^{D-1} & = \frac{1}{\sqrt{2 \upalpha'}} \qty( n \frac{\upalpha'}{R} + m R ) \\ \widetilde{\upalpha}_0^{D-1} & = \frac{1}{\sqrt{2 \upalpha'}} \qty( n \frac{\upalpha'}{R} - m R ) \end{cases} \quad \Rightarrow \quad M^2 = -p^{\upmu} p_{\upmu} & = \frac{2}{\upalpha'} \qty( \upalpha_0^{D-1} )^2 + \frac{4}{\upalpha'} \qty( \mathrm{N} + a ) \\ & = \frac{2}{\upalpha'} \qty( \widetilde{\upalpha}_0^{D-1} )^2 + \frac{4}{\upalpha'} \qty( \widetilde{\mathrm{N}} + a ) \end{split} \end{equation*} \vfill } \only<3->{% \textbf{Dirichlet b.c.} consequence of \textbf{T-duality} on $p$ directions: \begin{equation*} \overline{X}( z ) \mapsto - \overline{X}( z ) \quad \Rightarrow \quad \eval{\partial_{\upsigma} X^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 \quad \stackrel{T-duality}{\longrightarrow} \quad \eval{\partial_{\uptau} \widetilde{X}^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 \end{equation*} thus \textbf{open strings} can be \textbf{constrained} to $D(D - p - 1)$-branes. \hfill \cite{Polchinski (1995, 1996)} \vfill } \end{block} \end{frame} \begin{frame}{D-branes and Open Strings} Introducing $Dp$-branes breaks \highlight{$\mathrm{ISO}(1,\, D-1) \rightarrow \mathrm{ISO}( 1, p ) \otimes \mathrm{SO}( D - 1 - p )$}: \begin{equation*} \mathcal{A}^{\upmu} \rightarrow \qty( \mathcal{A}^A,\, \mathcal{A}^a ) \quad \Rightarrow \quad \mathrm{U}( 1 )~\text{theory~in}~p+1~\text{dimensions~(and~scalars)} \end{equation*} \pause \vspace{2em} \begin{columns}[T, totalwidth=0.95\linewidth] \begin{column}{0.475\linewidth} \centering \resizebox{0.5\columnwidth}{!}{\import{img}{chanpaton.pgf}} \hfill\cite{Chan, Paton (1969)} \begin{equation*} \ket{n;\, r} = \sum\limits_{i,\, j = 1}^N \ket{n;\, i,\, j}\, \tensor{\uplambda}{^r_{ij}} \quad \Rightarrow \quad \highlight{$\mathrm{U}(N)$} \end{equation*} \end{column} \hfill \pause \begin{column}{0.5\linewidth} \centering \resizebox{\columnwidth}{!}{\import{img}{smbranes.pgf}} % \begin{block}{Symmetry Enhancement} % When branes are \textbf{coincident}: % \begin{equation*} % \bigoplus\limits_{r = 1}^N \mathrm{U}_r(1) % \quad % \longrightarrow % \quad % \mathrm{U}( N ) % \end{equation*} % \end{block} \end{column} \end{columns} \end{frame} % \begin{frame}{Standard Model-like Scenarios} % \centering % \resizebox{0.8\linewidth}{!}{\import{img}{smbranes.pgf}} % \hfill\cite{Zwiebach (2009)} % \end{frame} \subsection[D-branes at Angles]{D-branes Intersecting at Angles} \begin{frame}{Intersecting D-branes} Consider \highlight{$3$ intersecting $D6$-branes} filling $\mathscr{M}^{1,3}$ and \textbf{embedded in} $\mathds{R}^6$ \begin{equationblock}{Twist Fields Correlators} \begin{equation*} \left\langle \prod\limits_{t = 1}^{N_B} \upsigma_{\mathrm{M}_{(t)}}\qty( x_{(t)} ) \right\rangle = \mathcal{N}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) e^{- S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} )} \end{equation*} \end{equationblock} \pause \begin{tikzpicture}[remember picture, overlay] \draw[line width=4pt, red] (29.5em,3.5em) ellipse (2cm and 1cm); \end{tikzpicture} \pause \begin{columns} \begin{column}{0.3\linewidth} \centering \resizebox{0.8\columnwidth}{!}{\import{img}{branesangles.pgf}} \end{column} \begin{column}{0.7\linewidth} D-branes in \textbf{factorised} internal space: \begin{itemize} \item \textbf{embedded as lines} in $\mathds{R}^2 \times \mathds{R}^2 \times \mathds{R}^2$ \item \textbf{relative rotations} are $\mathrm{SO}(2) \simeq \mathrm{U}(1)$ elements \item $S_{E}^{(\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) \sim \text{Area}\qty( \qty{ f_{(t)},\, \mathrm{R}_{(t)} }_{1 \le t \le N_B} )$ \end{itemize} \hfill\cite{Cremades, Ibanez, Marchesano (2003); Pesando (2012)} \end{column} \end{columns} \end{frame} \begin{frame}{$\mathrm{SO}(4)$ Rotations} Consider \highlight{$\mathds{R}^4 \times \mathds{R}^2$} (focus on $\mathds{R}^4$): \begin{columns} \begin{column}{0.4\linewidth} \centering \resizebox{0.9\columnwidth}{!}{\import{img}{welladapted.pgf}} \end{column} \begin{column}{0.6\linewidth} \begin{equation*} \qty( X_{(t)} )^I = \tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I \in \mathds{R}^4 \end{equation*} where \begin{equation*} R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )} \end{equation*} that is \begin{equation*} \qty[ R_{(t)} ] = \qty{ R_{(t)} \sim \mathcal{O}_{(t)} R_{(t)} } \end{equation*} \end{column} \end{columns} \end{frame} \begin{frame}{Boundary Conditions and Open Strings} \begin{columns} \begin{column}{0.6\linewidth} \begin{itemize} \item $u = x + i y = e^{\uptau_e + i \upsigma}$ and $\overline{u} = u^*$ \item $x_{(t)} < x_{(t-1)}$ \textbf{worldsheet intersection points} % \item $X_{(t)}^{1,\, 2}$ are \textbf{Neumann}, $X_{(t)}^{3,\, 4}$ are \textbf{Dirichlet} \end{itemize} \end{column} \hfill \begin{column}{0.4\linewidth} \centering \resizebox{\columnwidth}{!}{\import{img}{branchcuts.pgf}} \end{column} \end{columns} \pause \begin{equationblock}{Branch Cuts and Discontinuities for $x \in D_{(t)}$} \begin{equation*} \begin{cases} \partial_u X( x + i 0^+ ) & = U_{(t)} \cdot \partial_{\overline{u}} \overline{X}( x - i 0^+ ) = \qty[% R_{(t)}^{-1} \cdot \qty( \upsigma_3 \otimes \mathds{1}_2 ) \cdot R_{(t)} ] \cdot \partial_{\overline{u}} \overline{X}( x - i 0^+ ) \\ X( x_{(t)},\, x_{(t)} ) & = f_{(t)} \end{cases} \end{equation*} \end{equationblock} \end{frame} \begin{frame}{Doubling Trick and Spinor Representation} \begin{equationblock}{Doubling Trick} \begin{equation*} \partial_z \mathcal{X}( z ) = \begin{cases} \partial_u X( u ) & \text{if}~z \in \mathscr{H}_{>}^{(\overline{t})} \\ U_{(\overline{t})}\, \partial_{\overline{u}} \overline{X}( \overline{u} ) & \text{if}~z \in \mathscr{H}_{<}^{(\overline{t})} \end{cases} \quad \Rightarrow \quad \mqty{% \partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_+ ) = \mathcal{U}_{(t,\, t+1)}\, \partial_{z} \mathcal{X}( x_{(t)} + \updelta_+ ), \\ \partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_- ) = \widetilde{\mathcal{U}}_{(t,\, t+1)}\, \partial_{z} \mathcal{X}( x_{(t)} + \updelta_- ), } \end{equation*} where $\mathscr{H}_{\gtrless}^{(t)} = \qty{z \in \mathds{C} \mid \Im z \gtrless 0~\text{or}~z \in D_{(t)} }$ and $\updelta_{\pm} = \upeta \pm i 0^+$. \end{equationblock} \pause \begin{tikzpicture}[remember picture, overlay] \draw[line width=4pt, red] (31em,6em) ellipse (0.8cm and 1cm); \end{tikzpicture} \pause Use \highlight{Pauli matrices} $\uptau = \qty( i\, \mathds{1}_2, \vec{\upsigma} )$: \begin{equation*} \partial_z \mathcal{X}_{(s)}( z ) = \partial_z \mathcal{X}^I( z )\, \uptau_I \quad \Rightarrow \quad \partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i}\, \updelta_{\pm} ) = \overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)}\, \partial_{z} \mathcal{X}( x_{(t)} + \updelta_{\pm} )\, \overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)}\, \end{equation*} where \begin{equation*} \overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)} \in \mathrm{SU}(2)_L \quad \text{and} \quad \overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)} \in \mathrm{SU}(2)_R \end{equation*} \end{frame} \begin{frame}{Hypergeometric Basis} \begin{columns}[totalwidth=0.95\linewidth] \begin{column}{0.4\linewidth} \centering \resizebox{\columnwidth}{!}{\import{img}{threebranes_plane.pgf}} \end{column} \hfill \begin{column}{0.6\linewidth} Sum over \highlight{all contributions:} \begin{equation*} \begin{split} \partial_z \mathcal{X}( z ) & = \pdv{\omega_z}{z}\, \sum\limits_{l,\, r = -\infty}^{+\infty} c_{lr}\, \qty( - \upomega_z )^{A_{lr}}\, \qty( 1 - \upomega_z )^{B_{lr}}\, \\ & \times B_{0,\, l}^{(L)}( \omega_z )\, \qty( B_{0,\, r}^{(R)}( \omega_z ) )^T \end{split} \end{equation*} \end{column} \end{columns} \vfill \pause \begin{equationblock}{Basis of Solutions} \begin{equation*} B_{0,\, n}( \upomega_z ) = \mqty(% 1 & 0 \\ 0 & K_n ) \mqty(% \frac{1}{\Upgamma( c_n )}\, \tensor[_2]{F}{_1}( a_n,\, b_n;\, c_n;\, \upomega_z ) \\ \frac{\qty( -\upomega_z )^{1 - c_n}}{\Upgamma( 2 - c_n )}\, \tensor[_2]{F}{_1}( a_n + 1 - c_n,\, b_n + 1 - c_n;\, 2 - c_n;\, \upomega_z ) ) \end{equation*} \end{equationblock} \end{frame} \begin{frame}{The Solution} Sequence of the operations: \begin{enumerate} \item rotation matrix $=$ monodromy matrix \item contiguity relations $\Rightarrow$ independent hypergeometrics \item finite action $\Rightarrow$ $2$ solutions (no.\ of d.o.f.\ is correctly saturated) \item boundary conditions $\Rightarrow$ fix free constants $c_{lr}$ \end{enumerate} \pause \begin{block}{Physical Interpretation} \only<2>{% \begin{columns} \begin{column}{0.4\linewidth} \centering \resizebox{0.6\columnwidth}{!}{\import{img}{branesangles.pgf}} \end{column} \hfill \begin{column}{0.6\linewidth} \begin{equation*} \begin{split} 2 \uppi \upalpha' \eval{S_{\mathds{R}^4}}_{\text{on-shell}} & = \sum\limits_{t = 1}^3 \qty( \frac{1}{2} \abs{g_{(t)}^{\perp}} \abs{f_{(t-1)} - f_{(t)}} ) \\ & = \text{Area}\qty( \qty{ f_{(t)} }_{1 \le t \le N_B} ) \end{split} \end{equation*} \end{column} \end{columns} \vfill } \only<3->{% \begin{columns} \begin{column}{0.35\linewidth} \centering \resizebox{0.75\columnwidth}{!}{\import{img}{brane3d.pgf}} \end{column} \hfill \begin{column}{0.6\linewidth} \begin{itemize} \item strings no longer confined to plane \item strings form a \emph{small bump} from the D-brane \item classical action \textbf{larger} than factorised case \end{itemize} \hspace{0.65\columnwidth}\cite{\textbf{RF}, Pesando (2019)} \end{column} \end{columns} } \end{block} \end{frame} \subsection[Fermions]{Fermions and Point-like Defect CFT} \begin{frame}{Fermions on the Strip} \begin{columns}[totalwidth=0.95\linewidth] \begin{column}{0.4\linewidth} \centering \resizebox{0.9\columnwidth}{!}{\import{img}{defects.pgf}} \end{column} \hfill \begin{column}{0.6\linewidth} \begin{equationblock}{Action of Boundary Changing Operators} \begin{equation*} \begin{cases} \uppsi_-^i( \uptau, 0 ) & = \tensor{\qty( R_{(t)} )}{^I_J}\, \uppsi_+^J( \uptau, 0 ) \quad \text{for}~ \uptau \in \qty( \hat{\uptau}_{(t)},\, \hat{\uptau}_{(t-1)} ) \\ \uppsi_-^I( \uptau, \uppi ) & = - \uppsi_+^I( \uptau, \uppi ) \quad \text{for}~ \uptau \in \mathds{R} \end{cases} \end{equation*} \end{equationblock} \end{column} \end{columns} \vfill \pause \begin{equation*} \mathcal{T}_{\pm\pm}( \upxi_{\pm} ) = -i\, \frac{T}{4}\, \uppsi^*_{\pm,\, I}( \upxi_{\pm} )\, \overset{\leftrightarrow}{\partial} \uppsi^I_{\pm}( \upxi_{\pm} ) \quad \Rightarrow \quad \begin{cases} \dot{\mathrm{H}}( \uptau ) & % = % \partial_{\uptau} % \qty(% % \int\limits_0^{\uppi} \dd{\upsigma} % \mathcal{T}_{\uptau\uptau}( \uptau, \upsigma ) % ) = 0 \quad \Leftrightarrow \quad \uptau \in \qty( \uptau_{(t)},\, \uptau_{(t-1)} ) \\ \dot{\mathrm{P}}( \uptau ) & % = % \partial_{\uptau} % \qty(% % \int\limits_0^{\uppi} \dd{\upsigma} % \mathcal{T}_{\uptau\upsigma}( \uptau, \upsigma ) % ) \neq 0 \end{cases} \end{equation*} \end{frame} \begin{frame}{Conserved Product and Operators} Expand on a \textbf{basis of solutions} \begin{equation*} \uppsi_{\pm}( \upxi_{\pm} ) = \sum\limits_{n = -\infty}^{+\infty} b_n\, \uppsi_n( \upxi_{\pm} ) \qquad \Rightarrow \qquad \Uppsi( z ) = \begin{cases} \uppsi_{E,\, +}( u ) \quad \text{if}~z \in \mathscr{H}_{>}^{(\overline{t})} \\ \uppsi_{E,\, -}( u ) \quad \text{if}~z \in \mathscr{H}_{<}^{(\overline{t})} \end{cases} \end{equation*} \pause \begin{equationblock}{Conserved Product and Dual Basis} \begin{equation*} \left\langle\!\left\langle \tensor[^*]{\uppsi}{_n},\, \uppsi_m \right. \right\rangle = 2\uppi \mathcal{N}\, \oint \frac{\dd{z}}{2\uppi i}\, \tensor[^*]{\Uppsi}{_n^*}\, \tensor{\Uppsi}{_m} = \updelta_{n,\, m} \quad \Rightarrow \quad \left\langle\!\left\langle \tensor[^*]{\Uppsi}{_n^{(*)}},\, \Uppsi^{(*)} \right. \right\rangle = b_n^{(\dagger)} \end{equation*} \end{equationblock} \pause Derive the \textbf{algebra of operators:} \begin{equation*} \qty[ b_n,\, b_m^{\dagger} ]_+ = \frac{2 \mathcal{N}}{T}\, \left\langle\!\left\langle \tensor[^*]{\Uppsi}{_n^*},\, \Uppsi_m^* \right. \right\rangle \end{equation*} \end{frame} \begin{frame}{Twisted Complex Fermions} Consider $R_{(t)} = e^{i \uppi \upalpha_{(t)}} \in \mathrm{U}( 1 )$: \begin{equation*} \Uppsi( x_{(t)} + e^{2\uppi i} \updelta ) = e^{i \uppi \upepsilon_{(t)}}\, \Uppsi( x_{(t)} + \updelta ) \end{equation*} where \begin{equation*} \upepsilon_{(t)} = \upalpha_{(t+1)} - \upalpha_{(t)} + \uptheta\qty( \upalpha_{(t)} - \upalpha_{(t+1)} - 1 ) - \uptheta\qty( \upalpha_{(t+1)} - \upalpha_{(t)} - 1 ) \end{equation*} \pause \begin{equationblock}{Basis of Solutions} \begin{equation*} \begin{split} \Uppsi_n\qty( z;\, \qty{ x_{(t)} } ) & = \mathcal{N}_{\Uppsi}\, z^{-n}\, \prod\limits_{t = 1}^N \qty( 1 - \frac{z}{x_{(t)}} )^{n_{(t)} + \frac{\upepsilon_{(t)}}{2}} \\ \tensor[^*]{\Uppsi}{_n}\qty( z;\, \qty{ x_{(t)} } ) & = \frac{1}{2\uppi \mathcal{N} \mathcal{N}_{\Uppsi}}\, z^{n - 1}\, \prod\limits_{t = 1}^N \qty( 1 - \frac{z}{x_{(t)}} )^{-\widetilde{n}_{(t)} + \frac{\upepsilon_{(t)}}{2}} \end{split} \end{equation*} \end{equationblock} \end{frame} \begin{frame}{Vacua} Define the \textbf{vacuum} with respect to $b_n$: \begin{equation*} \begin{split} b_n \ket{\qty{ x_{(t)} }} = 0 &\quad \text{for} \quad n \ge 1 \\ b_n \ket{\widetilde{0}} = 0 &\quad \text{for} \quad n \ge n_{(t)} + \frac{\upepsilon_{(t)}}{2} + \frac{1}{2} \end{split} \end{equation*} \pause Theories are subject to \textbf{consistency conditions:} \begin{columns} \begin{column}{0.6\linewidth} \begin{equation*} \braket{\qty{x_{(t)}}} = 1 \quad \Rightarrow \quad \mathrm{L} = n_{(t)} + \widetilde{n}_{(t)} \uncover<3->{% \alert{= 0} } \end{equation*} \end{column} \hfill \begin{column}{0.4\linewidth} \centering \resizebox{\columnwidth}{!}{\import{img}{inconsistent_theories.pgf}} \end{column} \end{columns} \end{frame} \begin{frame}{Stress-energy Tensor and CFT Approach} Compute the OPEs leading to the \highlight{time dependent} \textbf{stress-energy tensor:} \begin{equation*} \mathcal{T}( z ) = \frac{\uppi T}{2} \mathcal{N}_{\Uppsi}^2 \sum\limits_{n,\, m = -\infty}^{+\infty} \colon b_n\, b_m^* \colon\, z^{-n -m}\, \qty[% \frac{m - n}{2} + 2 \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} ] + \frac{1}{2} \qty( \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} )^2 \end{equation*} \hfill\cite{\textbf{RF}, Pesando (2019)} \pause \begin{equationblock}{Invariant Vacuum and Spin Fields} \begin{equation*} \ket{\qty{ x_{(t)} }} = \mathcal{N}\qty( \qty{ x_{(t)} } )\, \mathrm{R}\qty[ \prod\limits_{t = 1}^M S_{(t)}( x_{(t)} ) ]\, \ket{0}_{\mathrm{SL}_2( \mathds{R} )} \end{equation*} \end{equationblock} \end{frame} \begin{frame}{Spin Fields Amplitudes} \begin{equationblock}{Equivalence with Bosonization} \begin{equation*} \begin{split} \partial_{x_{(t)}} \ln \braket{\qty{x_{(t)}}} & = \oint\limits_{x_{(t)}} \frac{\dd{z}}{2\uppi i} \frac{% \bra{\qty{x_{(t)}}} \mathcal{T}( z ) \ket{\qty{x_{(t)}}} }{% \braket{\qty{x_{(t)}}} } \\ \Rightarrow \quad \braket{\qty{x_{(t)}}} & = \mathcal{N}\qty( \qty{ \upepsilon_{(t)} } ) \prod\limits_{\substack{t = 1 \\ t > u}}^N \qty( x_{(u)} - x_{(t)} )^{\qty( n_{(u)} + \frac{\upepsilon_{(u)}}{2} )\qty( n_{(t)} + \frac{\upepsilon_{(t)}}{2} )} \end{split} \end{equation*} \end{equationblock} \pause \begin{itemize} \item (semi-)phenomenological models involve \textbf{twist and spin} fields and \textbf{open strings} \item framework for \textbf{bosonic} open strings with \textbf{intersecting D-branes} \item \textbf{spin fields} as \textbf{boundary changing operators} (hidden in \textbf{defects}) \item framework for amplitudes (extension to (non) Abelian twist/spin fields?) \end{itemize} \end{frame} \section[Time Divergences]{Cosmological Backgrounds and Divergences} \subsection[Orbifold]{Orbifolds and Cosmological Toy Models} \begin{frame}{A Few Words on a Theory of Everything} \begin{center} \textbf{string theory} = theory of everything = \textbf{nuclear forces + gravity} \end{center} \pause \begin{columns} \begin{column}{0.5\linewidth} \centering \includegraphics[width=0.9\columnwidth]{img/cone.pdf} \end{column} \hfill \begin{column}{0.5\linewidth} From the phenomenological point of view: \begin{itemize} \item cosmological implications \pause \item Big Bang(-like) singularities \pause \item toy models of \textbf{space-like singularities} \end{itemize} \pause \begin{center} $\Downarrow$ \highlight{time-dependent orbifold models} \end{center} \hfill\cite{Craps, Kutasov, Rajesh (2002); Liu, Moore, Seiberg (2002)} \end{column} \end{columns} \end{frame} % \begin{frame}{Orbifolds} % \begin{columns}[T] % \begin{column}{0.475\linewidth} % \begin{tabular}{@{}p{0.975\columnwidth}@{}} % \textbf{Mathematics} % \\ % \toprule % \begin{itemize} % \item manifold $M$ % \item (Lie) group $G$ % \item \emph{stabilizer} $G_p = \qty{g \in G \mid gp = p \in M}$ % \item \emph{orbit} $Gp = \qty{gp \in M \mid g \in G}$ % \item charts $\upphi = \uppi \circ \mathscr{P}$ where: % \begin{itemize} % \item $\mathscr{P}\colon U \subset \mathds{R}^n \to U / G$ % \item $\uppi\colon U / G \to M$ % \end{itemize} % \end{itemize} % \end{tabular} % \end{column} % \hfill % \begin{column}{0.475\linewidth} % \begin{tabular}{@{}p{0.975\columnwidth}@{}} % \textbf{Physics} % \\ % \toprule % \begin{itemize} % \item global orbit space $M / G$ % \item $G$ group of isometries % \item fixed points % \item additional d.o.f.\ (\emph{twisted states}) % \item singular limits of CY manifolds % \end{itemize} % \end{tabular} % \end{column} % \end{columns} % \pause % \vspace{2em} % \begin{center} % Use \textbf{time-dependent orbifolds} to model singularities in time % \end{center} % \begin{tikzpicture}[remember picture, overlay] % \draw[line width=4pt, red] (5em,3.5em) rectangle (35em, 1em); % \end{tikzpicture} % \end{frame} \begin{frame}{Cosmological Singularities} Use \textbf{time-dependent orbifolds} to model \textbf{space-like singularities}: \begin{center} divergent \highlight{closed string} amplitudes $\Rightarrow$ gravitational backreaction? \end{center} \pause \begin{block}{Divergences} Even in simple models (e.g.\ NBO, more on this later) the $4$ tachyons amplitude is divergent \textbf{in the open sector at tree level}: \begin{equation*} A_4 \sim \int\limits_{q \sim \infty} \frac{\dd{q}}{\abs{q}} \mathscr{A}( q ) \end{equation*} where \begin{equation*} \mathscr{A}_{\text{closed}}( q ) \sim q^{4 - \upalpha' \norm{\vec{p}_{\perp}}^2} \qquad \text{and} \qquad \mathscr{A}_{\text{open}}( q ) \sim q^{1 - \upalpha' \norm{\vec{p}_{\perp}}^2} \trace(\qty[T_1,\, T_2]_+\, \qty[T_3,\, T_4]_+) \end{equation*} \end{block} \end{frame} \subsection[NBO]{Null Boost Orbifold} \begin{frame}{Null Boost Orbifold} Start from $\qty( x^+,\, x^-,\, x^2,\, \vec{x} ) \in \mathscr{M}^{1,\, D-1}$: \begin{equation*} \begin{cases} u & = x^- \\ z & = \frac{x^2}{\Updelta\, x^-} \\ v & = x^+ - \frac{1}{2} \frac{\qty( x^2 )^2}{x^-} \end{cases} \qquad \Rightarrow \qquad \dd{s}^2 = -2 \dd{u} \dd{v} + \qty( \Updelta\, u )^2\, \dd{z}^2 + \updelta_{ij} \dd{x}^i \dd{x}^j \end{equation*} \pause \begin{equationblock}{Killing Vector and Null Boost Orbifold} \begin{equation*} \upkappa = -i \qty( 2 \uppi \Updelta ) J_{+2} = 2 \uppi \partial_z \quad \Rightarrow \quad z \sim z + 2 \uppi n \end{equation*} \end{equationblock} \pause Scalars on NBO: \begin{equation*} \upphi_{\qty{ k_+,\, l,\, \vec{k},\, r}}\qty( u,\, v,\, z,\, \vec{x} ) = e^{i \qty( k_+ v + l z + \vec{k} \cdot \vec{x} )}\, \widetilde{\upphi}_{\qty{ k_+,\, l,\, \vec{k},\, r}}\qty( u ) = \frac{e^{i \qty( k_+ v + l z + \vec{k} \cdot \vec{x} )}}{\sqrt{\qty( 2 \uppi )^D\, \abs{2 \Updelta k_+ u}}}\, e^{-i \frac{l^2}{2 \Updelta^2 k_+} \frac{1}{u} + i \frac{\norm{\vec{k}}^2 + r}{2 k_+} u} \end{equation*} \end{frame} \begin{frame}{Scalar QED Interactions} Scalar--photon interactions: \begin{equation*} S_{\text{sQED}}^{\text{(int)}} = \int\limits_{\Upomega} \dd[D]{x} \sqrt{- g }\, \qty(% -i\, e\, g^{\upalpha\upbeta} a_{\upalpha} \qty( \upphi^*\, \partial_{\upbeta} \upphi - \partial_{\upbeta} \upphi^*\, \upphi ) + e^2\, g^{\upalpha\upbeta} a_{\upalpha} a_{\upbeta} \abs{\upphi}^2 - \frac{g_4}{4}\, \abs{\upphi}^4 ) \end{equation*} \pause Terms involved: \begin{equation*} \begin{split} \mathcal{I}^{\qty[\upnu]}_{\qty{N}} & = \int\limits_{-\infty}^{+\infty} \dd{u} \abs{\Updelta\, u} u^{\upnu} \prod\limits_{i = 1}^N \widetilde{\upphi}_{\qty{ k_{+\, (i)},\, l_{(i)},\, \vec{k}_{(i)},\, r_{(i)}}}\qty( u ) \\ \mathcal{J}^{\qty[\upnu]}_{\qty{N}} & = \int\limits_{-\infty}^{+\infty} \dd{u} \abs{\Updelta} \abs{u}^{1 + \upnu} \prod\limits_{i = 1}^N \widetilde{\upphi}_{\qty{ k_{+\, (i)},\, l_{(i)},\, \vec{k}_{(i)},\, r_{(i)}}}\qty( u ) \end{split} \end{equation*} \pause \begin{center} \emph{ most terms \textbf{do not converge} due to \textbf{isolated zeros} \emph{($l_{(*)} \equiv 0$)} and cannot be recovered even with a \textbf{distributional interpretation} due to the term $\propto u^{-1}$ in the exponential } \end{center} \end{frame} \begin{frame}{String and Field Theory} So far: \begin{itemize} \item field theory presents \textbf{divergences} (see sQED) \item obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) \textbf{do not work} \item divergences are \textbf{not (only) gravitational} \item \textbf{vanishing volume} in phase space responsible for the divergence \end{itemize} \vfill \pause What about \highlight{string theory?} \pause \begin{equationblock}{Massive String States} \begin{equation*} V_M\qty( x;\, k,\, S,\, \upxi ) = \colon \qty(% \frac{i}{\sqrt{2 \upalpha'}}\, \upxi_{\upalpha} \partial^2_x X^{\upalpha}( x,\, x ) + \qty( \frac{i}{\sqrt{2 \upalpha'}} )^2\, S_{\upalpha\upbeta} \partial_x X^{\upalpha}( x,\, x ) \partial_x X^{\upbeta}( x,\, x ) ) e^{i k \cdot X( x,\, x )} \colon \end{equation*} \end{equationblock} \pause \begin{center} \it string theory cannot do \textbf{better than field theory} (EFT) if the latter \textbf{does not exist} \end{center} \end{frame} \begin{frame}{Resolution and Motivation} Introduce the \highlight{generalised NBO:} \begin{equation*} \begin{cases} u & = x^- \\ z & = \frac{1}{2 x^-} \qty( \frac{x^2}{\Updelta_2} + \frac{x^3}{\Updelta_3} ) \\ w & = \frac{1}{2 x^-} \qty( \frac{x^2}{\Updelta_2} - \frac{x^3}{\Updelta_3} ) \\ v & = x^+ - \frac{1}{2 x^-} \qty( \qty( x^2 )^2 + \qty( x^3 )^2 ) \end{cases} \qquad \Rightarrow \qquad \upkappa = -2 \uppi i \qty( \Updelta_2 J_{+2} + \Updelta_3 J_{+3} ) = 2 \uppi \partial_z \end{equation*} \pause \begin{equationblock}{No isolated zeros $\Rightarrow$ distributional Interpretation} \begin{equation*} \widetilde{\upphi}_{\qty{ k_+,\, p,\, l,\, \vec{k},\, r}}\qty( u ) = \frac{1}{2 \sqrt{\qty(2 \uppi)^D \abs{\Updelta_2 \Updelta_3 k_+}}} \frac{1}{\abs{u}} e^{-i\, \qty( \frac{1}{8 k_+ u} \qty[ \frac{(l + p)^2}{\Updelta_2^2} + \frac{(l - p)^2}{\Updelta_3^2} ] - \frac{\norm{\vec{k}}^2 + r}{2 k_+} u )} \end{equation*} \end{equationblock} \end{frame} \begin{frame}{On the Divergences and Their Nature} \begin{itemize} \item divergences are present in sQED and \textbf{open string} sector \item singularities $\Rightarrow$ \textbf{massive states} are no longer spectators \item vanishing volume (\textbf{compact orbifold directions}) $\Rightarrow$ particles ``cannot escape'' \item \textbf{non compact} orbifold directions $\Rightarrow$ interpretation of \textbf{amplitudes as distributions} \item issue not restricted to NBO/GNBO but also BO, null brane, etc. (it is a \textbf{general issue} connected to the geometry of the underlying space) \end{itemize} \vfill \pause \begin{center} \it divergences are \textbf{hidden into EFT contact terms} and interactions with \textbf{string massive states}: gravity is not the only cause as the same problems are present also in gauge theories. \end{center} \begin{tikzpicture}[remember picture, overlay] \draw[line width=4pt, red] (0em, 4.5em) rectangle (40em, 1em); \end{tikzpicture} \hfill\cite{Arduino, \textbf{RF}, Pesando (2020)} \end{frame} \section[Deep Learning]{Deep Learning the Geometry of String Theory} \subsection[Introduction]{Machine Learning and Deep Learning} \begin{frame}{The Simplest Calabi--Yau} Focus on Calabi--Yau \highlight{3-folds:} \begin{equation*} h^{r,\, s} = \dim\limits_{\mathds{C}} H_{\overline{\partial}}^{r,\, s}\qty( M,\, \mathds{C} ) \qquad \Rightarrow \qquad \begin{cases} h^{0,\, 0} & = h^{3,\, 0} = 1 \\ h^{r,\, 0} & = 0 \quad \text{if} \quad r \neq 3 \\ h^{r,\, s} & = h^{3 - r,\, 3 - s} \\ h^{1,\, 1},\, h^{2,\, 1} \in \mathds{N} \end{cases} \end{equation*} \pause \begin{block}{Complete Intersection Calabi--Yau Manifolds} Intersection of hypersurfaces in \begin{equation*} \mathcal{A} = \mathds{P}^{n_1} \times \dots \times \mathds{P}^{n_m} \end{equation*} where \begin{equation*} \mathds{P}^n\colon \qquad \begin{cases} p_i\qty( Z^0,\, \dots,\, Z^n ) & = P_{i_1 \dots i_i} Z^{i_1} \dots Z^{i_i} = 0 \\ p_i\qty( \uplambda Z^0,\, \dots,\, \uplambda Z^n ) & = \uplambda^i p_i\qty( Z^0,\, \dots,\, Z^n ) \end{cases} \end{equation*} \hfill\cite{Green, Hübsch (1987); Hübsch (1992)} \end{block} \end{frame} \begin{frame}{Representation of the Output} CICY can be generalised to \highlight{$m$ projective spaces and $k$ equations.} The problem is thus mapped to: \begin{equation*} \begin{tabular}{@{}lccc@{}} $\mathscr{R}\colon$ & $\mathds{N}^{m \times k}$ & $\longrightarrow$ & $\mathds{N}$ \\[1em] & $\qty[% \begin{tabular}{@{}c|ccc@{}} $\mathds{P}^{n_1}$ & $a_1^1$ & $\dots$ & $a_k^1$ \\ $\vdots$ & $\vdots$ & $\ddots$ & $\vdots$ \\ $\mathds{P}^{n_m}$ & $a_1^m$ & $\dots$ & $a_k^m$ \end{tabular} ]$ & $\longrightarrow$ & $h^{1,\, 1} \quad \text{or} \quad h^{2,\, 1}$ \end{tabular} \end{equation*} \pause \begin{tikzpicture}[remember picture, overlay] \draw[line width=4pt, red] (13em, 5.5em) rectangle (22em, 0em); \end{tikzpicture} \pause \begin{block}{Machine Learning Approach} What is $\mathscr{R}$ in \textbf{machine learning} approach? \begin{equation*} \mathscr{R}( M ) \rightarrow \mathscr{R}_n( M;\, w ) \rightarrow \widehat{h}^{p,\,q} \qquad \text{s.t.} \qquad \exists n > M > 0 \quad \mid \quad \mathcal{L}_n\qty(\widehat{h}^{p,\,q},\, h^{p,\,q}) < \upepsilon \quad \forall \upepsilon > 0 \end{equation*} \end{block} \end{frame} \begin{frame}{Machine Learning} \begin{itemize} \item \textbf{optimisation problem} $\Rightarrow$ \highlight{gradient descent} (or similar) \pause \item use \textbf{various algorithms} and exploit \textbf{large datasets} (more training) \pause \item intersection of \textbf{computer science, mathematics and physics} \pause \item provide in-depth \textbf{data analysis} of the datasets \end{itemize} \begin{center} \includegraphics[width=0.7\linewidth]{img/label-distribution_orig.pdf} \hfill\cite{Green \emph{et al.} (1987)} \end{center} \end{frame} \subsection[Machine Learning]{Machine Learning for String Theory} \begin{frame}{Dataset} \begin{itemize} \item $7890$ CICY manifolds (full dataset) \item \textbf{dataset pruning}: no product spaces, no ``very far'' outliers (reduction of $0.49\%$) \item $80\%$ training, $10\%$ validation, $10\%$ test \item choose \textbf{regression}, but evaluate using \textbf{accuracy} (round the result) \end{itemize} \pause \begin{center} \includegraphics[width=0.7\linewidth]{img/label-distribution-compare_orig.pdf} \end{center} \end{frame} \begin{frame}{Exploratory Data Analysis} \begin{center} \textbf{exploratory} data analysis $\rightarrow$ feature \textbf{selection} $\rightarrow$ Hodge numbers \end{center} \hfill\cite{Ruehle (2020); Erbin, \textbf{RF} (2020)} \vfill \pause \begin{columns} \begin{column}{0.33\linewidth} \centering \includegraphics[width=\columnwidth]{img/corr-matrix_orig.pdf} \end{column} \hfill \begin{column}{0.33\linewidth} \centering \includegraphics[width=\columnwidth, trim={0 0 6in 0}, clip]{img/scalar-features_orig.pdf} \end{column} \hfill \begin{column}{0.33\linewidth} \centering \includegraphics[width=\columnwidth, trim={0 0.5in 6in 0}, clip]{img/vector-tensor-features_orig.pdf} \end{column} \end{columns} \end{frame} \begin{frame}{Machine Learning} \centering \includegraphics[width=0.85\linewidth]{img/ml_map.png} \begin{tikzpicture}[remember picture, overlay] \node[anchor=base] at (16em,18em) {\cite{from \href{https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html}{scikit-learn.org}}}; \end{tikzpicture} \pause \begin{tikzpicture}[remember picture, overlay] \draw[line width=10pt, red, -latex] (-18em,2em) -- (-14.5em,7.5em); \draw[line width=10pt, red, -latex] (19em,9em) -- (14em,5em); \end{tikzpicture} \pause \begin{tikzpicture}[remember picture, overlay] \draw[line width=4pt, red] (12em,13em) ellipse (2cm and 1.5cm); \end{tikzpicture} \end{frame} \begin{frame}{A Word on PCA} \begin{columns} \begin{column}{0.4\linewidth} What is PCA for a $X \in \mathds{R}^{n \times p}$? \begin{itemize} \item project data such that \textbf{variance is maximised} \item \textbf{eigenvectors} of $X X^T$ or the \textbf{singular values} of $X$ \item isolate \textbf{signal} from \textbf{background} \item ease the ML job of finding a better representation of the input \end{itemize} \end{column} \hfill \pause \begin{column}{0.6\linewidth} \centering \includegraphics[width=0.5\columnwidth]{img/marchenko-pastur.pdf} \includegraphics[width=\columnwidth]{img/svd_orig.pdf} \end{column} \end{columns} \end{frame} \begin{frame}{Machine Learning Results} \begin{columns} \begin{column}{0.5\linewidth} \centering \textbf{Configuration Matrix Only} \includegraphics[width=0.75\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_matrix_plots.pdf} \end{column} \hfill\pause \begin{column}{0.5\linewidth} \centering \textbf{Best Training Set} \cite{Erbin, \textbf{RF} (2020)} \includegraphics[width=0.75\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_best_plots.pdf} \end{column} \end{columns} \end{frame} \subsection[Deep Learning]{AI Implementations for Geometry and Strings} \begin{frame}{Artificial Intelligence and Neural Networks} \begin{columns} \begin{column}{0.6\linewidth} \begin{itemize} \item use \textbf{gradient descent} to optimise \textbf{weights} \item learn highly \textbf{non linear} representations of the input \item can be \highlight{``large''} to have enough parameters \item can be \highlight{``deep''} to to learn \textbf{complicated functions} \end{itemize} \begin{block}{Layers} \vspace{0.5em} \begin{tabular}{@{}ll@{}} fully connected: & $\upphi\qty( a^{\qty(i)\, \qty{l}} \cdot W^{\qty{l}} + b^{\qty{l}} \mathds{1} )$ \\ convolutional: & $\upphi\qty( a^{\qty(i)\, \qty{l}}\, *\, W^{\qty{l}} + b^{\qty{l}} \mathds{1} )$ \end{tabular} \end{block} Non linearity ensured by: \begin{equation*} \upphi( z ) = \mathrm{ReLU}\qty( z ) = \max\qty(0,\, z) \end{equation*} \end{column} \hfill \begin{column}{0.4\linewidth} \centering \resizebox{\columnwidth}{!}{\import{img}{fc.pgf}} \hfill\cite{rendition of the neural network in Bull et al.\ (2018)} \end{column} \end{columns} \end{frame} \begin{frame}{Convolutional Neural Networks} Why convolutional? \begin{columns} \begin{column}{0.4\linewidth} \begin{itemize} \item retain \textbf{spacial awareness} \item smaller \textbf{no.\ of parameters} ($\approx 2 \times 10^5$ vs.\ $\approx 2 \times 10^6$) \item weights are \textbf{shared} \item CNNs isolate \textbf{``defining features''} \item find patterns as in \textbf{computer vision} \end{itemize} \end{column} \hfill \begin{column}{0.6\linewidth} \centering \only<1>{\includegraphics[width=0.75\columnwidth, trim={12in 5in 0 5in}, clip]{img/input_mat.png}} \only<2>{ \animategraphics[autoplay,loop,controls={play,stop},width=\linewidth]{8}{img/animation/sequence/conv-}{0}{79} } \only<3>{\resizebox{\columnwidth}{!}{\import{img}{ccnn.pgf}}} \end{column} \end{columns} \end{frame} \begin{frame}{Inception Neural Networks} Recent development by deep learning research at \highlight{Google} led to: \begin{itemize} \item neural networks with better \textbf{generalisation properties} \item \textbf{smaller} networks (both parameters and depth) \item different \textbf{concurrent kernels} \end{itemize} \pause \begin{center} \resizebox{0.75\linewidth}{!}{\import{img}{icnn.pgf}} \end{center} \end{frame} \begin{frame}{Deep Learning Topology with Computer Vision} \begin{columns} \begin{column}{0.5\linewidth} \centering \textbf{Best Training Set} \cite{Erbin, \textbf{RF} (2020)} \only<1>{\includegraphics[width=0.8\columnwidth, trim={0 0 1.65in 0}, clip]{img/cicy_best_plots.pdf}} \only<2->{\includegraphics[width=\columnwidth]{img/cicy_best_plots.pdf}} \end{column} \hfill \begin{column}{0.5\linewidth} \centering \only<2->{ \includegraphics[width=0.65\columnwidth]{img/inc_nn_learning_curve_h11.pdf} \includegraphics[width=0.65\columnwidth]{img/inc_nn_learning_curve.pdf} \vfill \cite{see Erbin's talk at \href{https://indico.cern.ch/event/958074/contributions/4133651/}{\emph{string\_data 2020}}} } \end{column} \end{columns} \end{frame} \begin{frame}{A Few Comments and Future Directions} \begin{tabular}{@{}l@{}} Why \highlight{deep learning in physics?} \\ \toprule $\circ$ reliable \textbf{predictive method} \pause (provided good data analysis) \\ $\circ$ reliable \textbf{source of inspiration} \pause (provided good data analysis) \\ $\circ$ reliable \textbf{generalisation method} \pause (provided good data analysis) \\ $\circ$ \textbf{CNNs are powerful tools} (this is the \emph{first time in physics!}) \\ $\circ$ interdisciplinary approach $=$ win-win situation! \\[1em] \pause What now? \\ \toprule $\circ$ representation learning $\Rightarrow$ what is the best way to represent CICYs? \\ $\circ$ study invariances $\Rightarrow$ invariances should not influence the result (graph representations?) \\ $\circ$ higher dimensions $\Rightarrow$ what about CICY 4-folds? \\ $\circ$ geometric deep learning $\Rightarrow$ explain the geometry of the ``AI'' behind deep learning! \\ $\circ$ reinforcement learning $\Rightarrow$ give the rules, not the result! \end{tabular} \end{frame} {% \setbeamertemplate{footline}{} \usebackgroundtemplate{% \tikz\node[opacity=0.1]{\includegraphics[width=\paperwidth]{img/torino.png}}; } \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} \begin{frame}[noframenumbering]{The End?} \begin{columns}[T, totalwidth=\linewidth] \begin{column}{0.7\linewidth} \begin{itemize} \item \textbf{D-branes at angles} and \textbf{defect CFT} $\quad \rightarrow \quad$ \textbf{spin and twist fields} \item \textbf{time dependent orbifolds} $\quad \rightarrow \quad$ strings and \textbf{divergences} \item \textbf{deep learning} $\quad \rightarrow \quad$ CICY and \textbf{topological properties} \end{itemize} \end{column} \begin{column}{0.3\linewidth} \centering \includegraphics[width=0.5\columnwidth]{\firstlogo} \end{column} \end{columns} \vfill \begin{center} \Huge THANK YOU \end{center} \end{frame} } \end{document}