Add fade animation and content up to d-branes
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										23
									
								
								img/chanpaton.pgf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								img/chanpaton.pgf
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,23 @@ | |||||||
|  | \begin{tikzpicture} | ||||||
|  |  | ||||||
|  | % draw the D-branes | ||||||
|  | \draw[thick] (0cm, 0cm) -- (1cm, 0.5cm) -- (1cm, 4cm) -- (0cm, 3.5cm) -- cycle; | ||||||
|  | \draw[thick] (2.5cm, 0cm) -- (3.5cm, 0.5cm) -- (3.5cm, 4cm) -- (2.5cm, 3.5cm) -- cycle; | ||||||
|  | \draw[thick] (5cm, 0cm) -- (6cm, 0.5cm) -- (6cm, 4cm) -- (5cm, 3.5cm) -- cycle; | ||||||
|  |  | ||||||
|  | % draw strings | ||||||
|  | \draw[decorate, decoration={snake, segment length=1cm}, dash pattern=on 2.45cm off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt, postaction={decoration={markings, mark=at position 0.5 with {\arrow{>}}}, decorate}] (0.5cm, 3cm) -- (3cm, 1.5cm); | ||||||
|  | \node[anchor=base] (l1) at (1.75cm, 2.75cm) {$\tensor{\lambda}{^1_1_2}$}; | ||||||
|  |  | ||||||
|  | \draw[decorate, decoration={snake, segment length=1cm}, dash pattern=on 2.45cm off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt, postaction={decoration={markings, mark=at position 0.5 with {\arrow{>}}}, decorate}] (3cm, 3cm) -- (5.5cm, 1.5cm); | ||||||
|  | \node[anchor=base] (l2) at (4.25cm, 2.75cm) {$\tensor{\lambda}{^2_2_3}$}; | ||||||
|  |  | ||||||
|  | \draw[decorate, decoration={snake, segment length=1cm}, postaction={decoration={markings, mark=at position 0.765 with {\arrow{>}}}, decorate}] (3cm, 2.5cm) .. controls (3.5cm, 2cm) and (3.5cm, 1cm) .. (3cm, 0.5cm); | ||||||
|  | \node[anchor=base] (l3) at (4cm, 1.5cm) {$\tensor{\lambda}{^3_2_2}$}; | ||||||
|  |  | ||||||
|  | \draw[decorate, decoration={snake, segment length=1cm}, dash pattern=on 5.15cm off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt, postaction={decoration={markings, mark=at position 0.5 with {\arrow{<}}}, decorate}] (0.5cm, 1cm) .. controls (1.5cm, 0cm) and (4cm, 0cm) .. (5.5cm, 1cm); | ||||||
|  | \node[anchor=base] (l4) at (3cm, -0.5cm) {$\tensor{\lambda}{^4_3_1}$}; | ||||||
|  |  | ||||||
|  | \end{tikzpicture} | ||||||
|  |  | ||||||
|  | % vim: ft=tex | ||||||
							
								
								
									
										
											BIN
										
									
								
								img/cy.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								img/cy.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 248 KiB | 
							
								
								
									
										
											BIN
										
									
								
								thesis.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								thesis.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										184
									
								
								thesis.tex
									
									
									
									
									
								
							
							
						
						
									
										184
									
								
								thesis.tex
									
									
									
									
									
								
							| @@ -26,6 +26,7 @@ | |||||||
| \usecolortheme{crane} | \usecolortheme{crane} | ||||||
| \usefonttheme{structurebold} | \usefonttheme{structurebold} | ||||||
| \setbeamertemplate{navigation symbols}{} | \setbeamertemplate{navigation symbols}{} | ||||||
|  | \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} | ||||||
|  |  | ||||||
| \author[Finotello]{Riccardo Finotello} | \author[Finotello]{Riccardo Finotello} | ||||||
| \title[D-branes and Deep Learning]{D-branes and Deep Learning} | \title[D-branes and Deep Learning]{D-branes and Deep Learning} | ||||||
| @@ -41,6 +42,10 @@ | |||||||
| } | } | ||||||
| \date{15th December 2020} | \date{15th December 2020} | ||||||
|  |  | ||||||
|  | \usetikzlibrary{decorations.markings} | ||||||
|  | \usetikzlibrary{decorations.pathmorphing} | ||||||
|  | \usetikzlibrary{arrows} | ||||||
|  |  | ||||||
| \newenvironment{equationblock}[1]{% | \newenvironment{equationblock}[1]{% | ||||||
|   \begin{block}{#1} |   \begin{block}{#1} | ||||||
|   \vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0pt} |   \vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0pt} | ||||||
| @@ -48,6 +53,8 @@ | |||||||
|   \end{block} |   \end{block} | ||||||
| } | } | ||||||
|  |  | ||||||
|  | \newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}} | ||||||
|  |  | ||||||
| \newcommand{\firstlogo}{img/unito} | \newcommand{\firstlogo}{img/unito} | ||||||
| \newcommand{\thefirstlogo}{% | \newcommand{\thefirstlogo}{% | ||||||
|   \begin{figure} |   \begin{figure} | ||||||
| @@ -138,6 +145,7 @@ | |||||||
|       \transparent{0.1} |       \transparent{0.1} | ||||||
|       \includegraphics[width=\paperwidth]{img/torino.png} |       \includegraphics[width=\paperwidth]{img/torino.png} | ||||||
|     } |     } | ||||||
|  |     \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} | ||||||
|     \begin{frame}[noframenumbering, plain] |     \begin{frame}[noframenumbering, plain] | ||||||
|       \titlepage{} |       \titlepage{} | ||||||
|     \end{frame} |     \end{frame} | ||||||
| @@ -145,6 +153,11 @@ | |||||||
|  |  | ||||||
|   {% |   {% | ||||||
|     \setbeamertemplate{footline}{} |     \setbeamertemplate{footline}{} | ||||||
|  |     \usebackgroundtemplate{% | ||||||
|  |       \transparent{0.1} | ||||||
|  |       \includegraphics[width=\paperwidth]{img/torino.png} | ||||||
|  |     } | ||||||
|  |     \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} | ||||||
|     \begin{frame}[noframenumbering]{\contentsname} |     \begin{frame}[noframenumbering]{\contentsname} | ||||||
|       \tableofcontents{} |       \tableofcontents{} | ||||||
|     \end{frame} |     \end{frame} | ||||||
| @@ -180,9 +193,11 @@ | |||||||
|       \end{equation*} |       \end{equation*} | ||||||
|     \end{equationblock} |     \end{equationblock} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|     \begin{columns} |     \begin{columns} | ||||||
|       \begin{column}[t]{0.5\linewidth} |       \begin{column}[t]{0.5\linewidth} | ||||||
|         \fcolorbox{yellow}{yellow!20}{Symmetries:} |         \highlight{Symmetries:} | ||||||
|         \begin{itemize} |         \begin{itemize} | ||||||
|           \item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$ |           \item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$ | ||||||
|  |  | ||||||
| @@ -192,8 +207,10 @@ | |||||||
|         \end{itemize} |         \end{itemize} | ||||||
|       \end{column} |       \end{column} | ||||||
|  |  | ||||||
|  |       \pause | ||||||
|  |  | ||||||
|       \begin{column}[t]{0.5\linewidth} |       \begin{column}[t]{0.5\linewidth} | ||||||
|         \fcolorbox{yellow}{yellow!20}{Conformal symmetry:} |         \highlight{Conformal symmetry:} | ||||||
|         \begin{itemize} |         \begin{itemize} | ||||||
|           \item \textbf{vanishing} stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$ |           \item \textbf{vanishing} stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$ | ||||||
|            |            | ||||||
| @@ -209,7 +226,7 @@ | |||||||
|   \begin{frame}{Action Principle and Conformal Symmetry} |   \begin{frame}{Action Principle and Conformal Symmetry} | ||||||
|     \begin{columns} |     \begin{columns} | ||||||
|       \begin{column}{0.6\linewidth} |       \begin{column}{0.6\linewidth} | ||||||
|         \fcolorbox{yellow}{yellow!20}{% |         \highlight{% | ||||||
|           Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$: |           Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$: | ||||||
|         } |         } | ||||||
|         \begin{equation*} |         \begin{equation*} | ||||||
| @@ -229,9 +246,9 @@ | |||||||
|  |  | ||||||
|         \begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$} |         \begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$} | ||||||
|           \begin{eqnarray*} |           \begin{eqnarray*} | ||||||
|             \qty[ L_n,\, L_m ] |             \qty[ \overset{\scriptscriptstyle(-)}{L}_n,\, \overset{\scriptscriptstyle(-)}{L}_m ] | ||||||
|             & = & |             & = & | ||||||
|             (n - m) L_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0} |             (n - m) \overset{\scriptscriptstyle(-)}{L}_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0} | ||||||
|             \\ |             \\ | ||||||
|             \qty[ L_n,\, \overline{L}_m ] |             \qty[ L_n,\, \overline{L}_m ] | ||||||
|             & = & |             & = & | ||||||
| @@ -243,14 +260,14 @@ | |||||||
|       \begin{column}{0.4\linewidth} |       \begin{column}{0.4\linewidth} | ||||||
|         \begin{figure}[h] |         \begin{figure}[h] | ||||||
|           \centering |           \centering | ||||||
|           \resizebox{0.8\columnwidth}{!}{\import{img}{complex_plane.pgf}} |           \resizebox{0.9\columnwidth}{!}{\import{img}{complex_plane.pgf}} | ||||||
|         \end{figure} |         \end{figure} | ||||||
|       \end{column} |       \end{column} | ||||||
|     \end{columns} |     \end{columns} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
|   \begin{frame}{Action Principle and Conformal Symmetry} |   \begin{frame}{Action Principle and Conformal Symmetry} | ||||||
|     \fcolorbox{yellow}{yellow!20}{Superstrings in $D$ dimensions:} |     \highlight{Superstrings in $D$ dimensions:} | ||||||
|     \begin{equation*} |     \begin{equation*} | ||||||
|       \mathcal{T}( z ) |       \mathcal{T}( z ) | ||||||
|       = |       = | ||||||
| @@ -264,6 +281,8 @@ | |||||||
|       c = \frac{3}{2} D |       c = \frac{3}{2} D | ||||||
|     \end{equation*} |     \end{equation*} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|     \begin{block}{$\qty( \uplambda, 0 )~/~\qty( 1 - \uplambda, 0 )$ Ghost System} |     \begin{block}{$\qty( \uplambda, 0 )~/~\qty( 1 - \uplambda, 0 )$ Ghost System} | ||||||
|       Introduce anti-commuting $\qty( b,\, c )$ and commuting $\qty( \upbeta,\, \upgamma )$ conformal fields: |       Introduce anti-commuting $\qty( b,\, c )$ and commuting $\qty( \upbeta,\, \upgamma )$ conformal fields: | ||||||
|       \begin{equation*} |       \begin{equation*} | ||||||
| @@ -277,10 +296,12 @@ | |||||||
|           \upbeta( z )\, \overline{\partial} \upgamma( z ) |           \upbeta( z )\, \overline{\partial} \upgamma( z ) | ||||||
|         ) |         ) | ||||||
|       \end{equation*} |       \end{equation*} | ||||||
|       where $\uplambda_b = 2$ and $\uplambda_{\upbeta} = \frac{3}{2}$. |       where $\uplambda_b = 2$ and $\uplambda_c = -1$, and $\uplambda_{\upbeta} = \frac{3}{2}$ and $\uplambda_{\upgamma} = -\frac{1}{2}$. | ||||||
|     \end{block} |     \end{block} | ||||||
|  |  | ||||||
|     \fcolorbox{yellow}{yellow!20}{Consequence:} |     \pause | ||||||
|  |  | ||||||
|  |     \highlight{Consequence:} | ||||||
|     \begin{equation*} |     \begin{equation*} | ||||||
|       c_{\text{full}} = c + c_{\text{ghost}} = 0 |       c_{\text{full}} = c + c_{\text{ghost}} = 0 | ||||||
|       \quad |       \quad | ||||||
| @@ -292,8 +313,153 @@ | |||||||
|  |  | ||||||
|  |  | ||||||
|   \begin{frame}{Extra Dimensions and Compactification} |   \begin{frame}{Extra Dimensions and Compactification} | ||||||
|  |     \begin{block}{Compactification} | ||||||
|  |       \begin{columns} | ||||||
|  |         \begin{column}{0.6\linewidth} | ||||||
|  |           \begin{equation*} | ||||||
|  |             \mathscr{M}^{1,\, 9} | ||||||
|  |             = | ||||||
|  |             \mathscr{M}^{1,\, 3} \otimes \mathscr{X}_6 | ||||||
|  |           \end{equation*} | ||||||
|  |           \begin{itemize} | ||||||
|  |             \item $\mathscr{X}_6$ is a \textbf{compact} manifold | ||||||
|  |  | ||||||
|  |             \item $N = 1$ \textbf{supersymmetry} is preserved in 4D | ||||||
|  |  | ||||||
|  |             \item algebra of $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ contained in arising \textbf{gauge group} | ||||||
|  |           \end{itemize} | ||||||
|  |         \end{column} | ||||||
|  |  | ||||||
|  |         \begin{column}{0.4\linewidth} | ||||||
|  |           \centering | ||||||
|  |           \includegraphics[width=0.7\columnwidth]{img/cy} | ||||||
|  |         \end{column} | ||||||
|  |       \end{columns} | ||||||
|  |     \end{block} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{columns} | ||||||
|  |       \begin{column}[t]{0.5\linewidth} | ||||||
|  |         \highlight{Kähler manifolds} $\qty( M,\, g )$ such that | ||||||
|  |         \begin{itemize} | ||||||
|  |           \item $\dim\limits_{\mathds{C}} M = m$ | ||||||
|  |  | ||||||
|  |           \item $\mathrm{Hol}( g ) \subseteq \mathrm{SU}( m )$ | ||||||
|  |  | ||||||
|  |           \item $g$ is Ricci-flat (equiv.\ $c_1\qty( M )$ vanishes) | ||||||
|  |         \end{itemize} | ||||||
|  |       \end{column} | ||||||
|  |  | ||||||
|  |       \pause | ||||||
|  |  | ||||||
|  |       \begin{column}[t]{0.5\linewidth} | ||||||
|  |         Characterised by \highlight{Hodge numbers} | ||||||
|  |         \begin{equation*} | ||||||
|  |           h^{r,\,s} = \dim\limits_{\mathds{C}} H_{\overline{\partial}}^{r,\,s}\qty( M,\, \mathds{C} ) | ||||||
|  |         \end{equation*} | ||||||
|  |         counting the no.\ of harmonic $(r,\,s)$-forms. | ||||||
|  |       \end{column} | ||||||
|  |     \end{columns} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
|  |   \begin{frame}{D-branes and Open Strings} | ||||||
|  |     Polyakov's action naturally introduces \highlight{Neumann b.c.:} | ||||||
|  |     \begin{equation*} | ||||||
|  |       \eval{\partial_{\upsigma} X\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 | ||||||
|  |     \end{equation*} | ||||||
|  |     satisfied by \textbf{open and closed} strings living in $D$ dimensions s.t.\ $\square X = 0$. | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{block}{T-duality} | ||||||
|  |       \begin{equation*} | ||||||
|  |         X( z, \overline{z} ) | ||||||
|  |         = | ||||||
|  |         X( z ) + \overline{X}( \overline{z} ) | ||||||
|  |         \quad | ||||||
|  |         \stackrel{T}{\Rightarrow} | ||||||
|  |         \quad | ||||||
|  |         X( z ) - \overline{X}( \overline{z} ) | ||||||
|  |         = | ||||||
|  |         Y( z, \overline{z} ) | ||||||
|  |         = | ||||||
|  |         Y( z ) + \overline{Y}( \overline{z} ) | ||||||
|  |       \end{equation*} | ||||||
|  |     \end{block} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     Resulting effect (repeated $p \le D - 1$ times) leads to \highlight{Dirichlet b.c.:} | ||||||
|  |     \begin{equation*} | ||||||
|  |       \eval{\partial_{\upsigma} X^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 | ||||||
|  |       \quad | ||||||
|  |       \stackrel{T}{\Rightarrow} | ||||||
|  |       \quad | ||||||
|  |       \eval{\partial_{\uptau} Y^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 | ||||||
|  |       \quad | ||||||
|  |       \forall i = 1, 2,\, \dots,\, p | ||||||
|  |     \end{equation*} | ||||||
|  |     thus \textbf{open strings} can be \textbf{constrained} to \highlight{$D(D - p - 1)$-branes.} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|  |   \begin{frame}{D-branes and Open Strings} | ||||||
|  |     Introducing $Dp$-branes breaks \highlight{$\mathrm{ISO}(1,\, D-1) \rightarrow \mathrm{ISO}( 1, p ) \otimes \mathrm{SO}( D - 1 - p )$.} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{block}{Spectrum} | ||||||
|  |       At massless level (\emph{irrep} of \textbf{little group} $\mathrm{SO}( D - 2 )$): | ||||||
|  |       \begin{equation*} | ||||||
|  |         \mathcal{A}^{\upmu} | ||||||
|  |         \quad \leftrightarrow \quad | ||||||
|  |         \alpha_{-1}^{\upmu} \ket{0} | ||||||
|  |         \qquad | ||||||
|  |         \longrightarrow | ||||||
|  |         \qquad | ||||||
|  |         \begin{tabular}{@{}llll@{}} | ||||||
|  |           $\mathcal{A}^A$ | ||||||
|  |           & | ||||||
|  |           $\leftrightarrow$ | ||||||
|  |           & | ||||||
|  |           $\alpha_{-1}^A \ket{0},$ | ||||||
|  |           & | ||||||
|  |           $A = 0,\, 1,\, \dots,\, p$ | ||||||
|  |           \\ | ||||||
|  |           $\mathcal{A}^a$ | ||||||
|  |           & | ||||||
|  |           $\leftrightarrow$ | ||||||
|  |           & | ||||||
|  |           $\alpha_{-1}^a \ket{0},$ | ||||||
|  |           & | ||||||
|  |           $a = 1,\, 2,\, \dots,\, D - p - 1$ | ||||||
|  |         \end{tabular} | ||||||
|  |       \end{equation*} | ||||||
|  |     \end{block} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{columns} | ||||||
|  |       \begin{column}{0.5\linewidth} | ||||||
|  |         \centering | ||||||
|  |         \resizebox{0.55\columnwidth}{!}{\import{img}{chanpaton.pgf}} | ||||||
|  |       \end{column} | ||||||
|  |  | ||||||
|  |       \begin{column}{0.5\linewidth} | ||||||
|  |         Introducing \textbf{Chan--Paton factors} $\tensor{\uplambda}{^r_{ij}}$, when branes are \textbf{coincident}: | ||||||
|  |         \begin{equation*} | ||||||
|  |           \bigoplus\limits_{r = 1}^N \mathrm{U}_r(1) | ||||||
|  |           \quad | ||||||
|  |           \longrightarrow | ||||||
|  |           \quad | ||||||
|  |           \mathrm{U}( N ) | ||||||
|  |         \end{equation*} | ||||||
|  |         \pause | ||||||
|  |         \highlight{Build gauge bosons, fermions and scalars.} | ||||||
|  |       \end{column} | ||||||
|  |  | ||||||
|  |     \end{columns} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|   \section[Time Divergences]{Cosmological Backgrounds and Divergences} |   \section[Time Divergences]{Cosmological Backgrounds and Divergences} | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user