Update references
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										
											BIN
										
									
								
								thesis.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								thesis.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										66
									
								
								thesis.tex
									
									
									
									
									
								
							
							
						
						
									
										66
									
								
								thesis.tex
									
									
									
									
									
								
							| @@ -56,6 +56,7 @@ | |||||||
| } | } | ||||||
|  |  | ||||||
| \newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}} | \newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}} | ||||||
|  | \renewcommand{\cite}[1]{{\tiny{\fcolorbox{red}{red!10}{[#1]}}}} | ||||||
|  |  | ||||||
| \newcommand{\firstlogo}{img/unito} | \newcommand{\firstlogo}{img/unito} | ||||||
| \newcommand{\thefirstlogo}{% | \newcommand{\thefirstlogo}{% | ||||||
| @@ -304,6 +305,8 @@ | |||||||
|         ) |         ) | ||||||
|       \end{equation*} |       \end{equation*} | ||||||
|       where $\uplambda_b = 2$ and $\uplambda_c = -1$, and $\uplambda_{\upbeta} = \frac{3}{2}$ and $\uplambda_{\upgamma} = -\frac{1}{2}$. |       where $\uplambda_b = 2$ and $\uplambda_c = -1$, and $\uplambda_{\upbeta} = \frac{3}{2}$ and $\uplambda_{\upgamma} = -\frac{1}{2}$. | ||||||
|  |       \hfill | ||||||
|  |       \cite{Friedan, Martinec, Shenker (1986)} | ||||||
|     \end{block} |     \end{block} | ||||||
|  |  | ||||||
|     \pause |     \pause | ||||||
| @@ -338,6 +341,7 @@ | |||||||
|         \end{column} |         \end{column} | ||||||
|  |  | ||||||
|         \begin{tikzpicture}[remember picture, overlay] |         \begin{tikzpicture}[remember picture, overlay] | ||||||
|  |           \node[anchor=base] at (8em,-3.3em) {\cite{code in Hanson (1994)}}; | ||||||
|           \node[anchor=base] at (3em,-3.75em) {\includegraphics[width=0.3\linewidth]{img/cy}}; |           \node[anchor=base] at (3em,-3.75em) {\includegraphics[width=0.3\linewidth]{img/cy}}; | ||||||
|         \end{tikzpicture} |         \end{tikzpicture} | ||||||
|         \begin{column}{0.3\linewidth} |         \begin{column}{0.3\linewidth} | ||||||
| @@ -411,6 +415,8 @@ | |||||||
|       \forall i = 1, 2,\, \dots,\, p |       \forall i = 1, 2,\, \dots,\, p | ||||||
|     \end{equation*} |     \end{equation*} | ||||||
|     thus \textbf{open strings} can be \textbf{constrained} to \highlight{$D(D - p - 1)$-branes.} |     thus \textbf{open strings} can be \textbf{constrained} to \highlight{$D(D - p - 1)$-branes.} | ||||||
|  |     \hfill | ||||||
|  |     \cite{Polchinski (1995, 1996)} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
|   \begin{frame}{D-branes and Open Strings} |   \begin{frame}{D-branes and Open Strings} | ||||||
| @@ -418,7 +424,7 @@ | |||||||
|  |  | ||||||
|     \pause |     \pause | ||||||
|  |  | ||||||
|     \begin{equationblock}{Massless Spectrum (\emph{irrep} of \textbf{little group} $\mathrm{SO}( D - 2 )$} |     \begin{equationblock}{Massless Spectrum (\emph{irrep} of \textbf{little group} $\mathrm{SO}( D - 2 )$)} | ||||||
|       \begin{equation*} |       \begin{equation*} | ||||||
|         \mathcal{A}^{\upmu} |         \mathcal{A}^{\upmu} | ||||||
|         \quad \leftrightarrow \quad |         \quad \leftrightarrow \quad | ||||||
| @@ -456,6 +462,7 @@ | |||||||
|  |  | ||||||
|       \begin{column}{0.5\linewidth} |       \begin{column}{0.5\linewidth} | ||||||
|         Introducing \textbf{Chan--Paton factors} $\tensor{\uplambda}{^r_{ij}}$, when branes are \textbf{coincident}: |         Introducing \textbf{Chan--Paton factors} $\tensor{\uplambda}{^r_{ij}}$, when branes are \textbf{coincident}: | ||||||
|  |         \hfill\cite{Chan, Paton (1969)} | ||||||
|         \begin{equation*} |         \begin{equation*} | ||||||
|           \bigoplus\limits_{r = 1}^N \mathrm{U}_r(1) |           \bigoplus\limits_{r = 1}^N \mathrm{U}_r(1) | ||||||
|           \quad |           \quad | ||||||
| @@ -472,6 +479,7 @@ | |||||||
|   \begin{frame}{Standard Model-like Scenarios} |   \begin{frame}{Standard Model-like Scenarios} | ||||||
|     \centering |     \centering | ||||||
|     \resizebox{0.8\linewidth}{!}{\import{img}{smbranes.pgf}} |     \resizebox{0.8\linewidth}{!}{\import{img}{smbranes.pgf}} | ||||||
|  |     \hfill\cite{Zwiebach (2009)} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -498,12 +506,12 @@ | |||||||
|     \pause |     \pause | ||||||
|  |  | ||||||
|     \begin{columns} |     \begin{columns} | ||||||
|       \begin{column}{0.5\linewidth} |       \begin{column}{0.3\linewidth} | ||||||
|         \centering |         \centering | ||||||
|         \resizebox{0.5\columnwidth}{!}{\import{img}{branesangles.pgf}} |         \resizebox{0.8\columnwidth}{!}{\import{img}{branesangles.pgf}} | ||||||
|       \end{column} |       \end{column} | ||||||
|  |  | ||||||
|       \begin{column}{0.5\linewidth} |       \begin{column}{0.7\linewidth} | ||||||
|         D-branes in \textbf{factorised} internal space: |         D-branes in \textbf{factorised} internal space: | ||||||
|         \begin{itemize} |         \begin{itemize} | ||||||
|           \item \textbf{embedded as lines} in $\mathds{R}^2 \times \mathds{R}^2 \times \mathds{R}^2$ |           \item \textbf{embedded as lines} in $\mathds{R}^2 \times \mathds{R}^2 \times \mathds{R}^2$ | ||||||
| @@ -512,6 +520,8 @@ | |||||||
|  |  | ||||||
|           \item $S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) \sim \text{Area}\qty( \qty{ f_{(t)},\, \mathrm{R}_{(t)} }_{1 \le t \le N_B} )$ |           \item $S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) \sim \text{Area}\qty( \qty{ f_{(t)},\, \mathrm{R}_{(t)} }_{1 \le t \le N_B} )$ | ||||||
|         \end{itemize} |         \end{itemize} | ||||||
|  |  | ||||||
|  |         \hfill\cite{Cremades, Ibanez, Marchesano (2003); Pesando (2012)} | ||||||
|       \end{column} |       \end{column} | ||||||
|     \end{columns} |     \end{columns} | ||||||
|   \end{frame} |   \end{frame} | ||||||
| @@ -813,7 +823,9 @@ | |||||||
|           %   \mathcal{T}_{\uptau\uptau}( \uptau, \upsigma ) |           %   \mathcal{T}_{\uptau\uptau}( \uptau, \upsigma ) | ||||||
|           % ) |           % ) | ||||||
|           = |           = | ||||||
|           0 \Leftrightarrow \uptau \in \qty( \uptau_{(t)},\, \uptau_{(t-1)} ) |           0 | ||||||
|  |           \quad \Leftrightarrow \quad | ||||||
|  |           \uptau \in \qty( \uptau_{(t)},\, \uptau_{(t-1)} ) | ||||||
|           \\ |           \\ | ||||||
|           \dot{\mathrm{P}}( \uptau ) |           \dot{\mathrm{P}}( \uptau ) | ||||||
|           & |           & | ||||||
| @@ -1082,6 +1094,7 @@ | |||||||
|  |  | ||||||
|           \highlight{time-dependent orbifold models} |           \highlight{time-dependent orbifold models} | ||||||
|         \end{center} |         \end{center} | ||||||
|  |         \hfill\cite{Craps, Kutasov, Rajesh (2002); Liu, Moore, Seiberg (2002)} | ||||||
|       \end{column} |       \end{column} | ||||||
|     \end{columns} |     \end{columns} | ||||||
|   \end{frame} |   \end{frame} | ||||||
| @@ -1097,9 +1110,9 @@ | |||||||
|  |  | ||||||
|             \item (Lie) group $G$ |             \item (Lie) group $G$ | ||||||
|  |  | ||||||
|             \item \emph{stabilizer} $G_p = \qty{g \in G \mid gp = p \in M}$ |             \item \emph{stabilizer}: $G_p = \qty{g \in G \mid gp = p \in M}$ | ||||||
|  |  | ||||||
|             \item \emph{orbit} $Gp = \qty{gp \in M \mid g \in G}$ |             \item \emph{orbit}: $Gp = \qty{gp \in M \mid g \in G}$ | ||||||
|  |  | ||||||
|             \item charts $\upphi = \uppi \circ \mathscr{P}$ where: |             \item charts $\upphi = \uppi \circ \mathscr{P}$ where: | ||||||
|  |  | ||||||
| @@ -1136,12 +1149,13 @@ | |||||||
|  |  | ||||||
|     \pause |     \pause | ||||||
|  |  | ||||||
|  |     \vspace{2em} | ||||||
|     \begin{center} |     \begin{center} | ||||||
|       time-dependent orbifolds |       Use \textbf{time-dependent orbifolds} to model singularities in time | ||||||
|     \end{center} |     \end{center} | ||||||
|  |  | ||||||
|     \begin{tikzpicture}[remember picture, overlay] |     \begin{tikzpicture}[remember picture, overlay] | ||||||
|       \draw[line width=4pt, red] (13em,3.5em) rectangle (27em, 1em); |       \draw[line width=4pt, red] (5em,3.5em) rectangle (35em, 1em); | ||||||
|     \end{tikzpicture} |     \end{tikzpicture} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
| @@ -1253,26 +1267,30 @@ | |||||||
|  |  | ||||||
|     \begin{center} |     \begin{center} | ||||||
|       \it |       \it | ||||||
|       most terms \textbf{do not converge} and cannot be recovered even with a \textbf{distributional interpretions} due to the term $\propto u^{-1}$ in the exponentatial |       most terms \textbf{do not converge} due to \textbf{isolated zeros} ($l_{(*)} \equiv 0$) and cannot be recovered even with a \textbf{distributional interpretions} due to the term $\propto u^{-1}$ in the exponentatial | ||||||
|     \end{center} |     \end{center} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
|   \begin{frame}{String and Field Theory} |   \begin{frame}{String and Field Theory} | ||||||
|     So far: |     So far: | ||||||
|     \begin{itemize} |     \begin{itemize} | ||||||
|       \item field theory presents \textbf{divergences} |       \item field theory presents \textbf{divergences} (even sQED $\rightarrow$ eikonal?) | ||||||
|          |  | ||||||
|         \pause |  | ||||||
|  |  | ||||||
|       \item issues are \textbf{still present} in sQED (eikonal?) |  | ||||||
|          |          | ||||||
|         \pause |         \pause | ||||||
|  |  | ||||||
|       \item divergences are \textbf{not (only) gravitational} |       \item divergences are \textbf{not (only) gravitational} | ||||||
|  |  | ||||||
|  |         \pause | ||||||
|  |  | ||||||
|  |       \item \textbf{vanishing volume} in phase space of the compact direction is responsible for the divergence | ||||||
|     \end{itemize} |     \end{itemize} | ||||||
|  |  | ||||||
|     \pause |     \pause | ||||||
|  |  | ||||||
|  |     What about \highlight{string theory?} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|     \begin{equationblock}{Massive String States} |     \begin{equationblock}{Massive String States} | ||||||
|       \begin{equation*} |       \begin{equation*} | ||||||
|         V_M\qty( x;\, k,\, S,\, \upxi ) |         V_M\qty( x;\, k,\, S,\, \upxi ) | ||||||
| @@ -1410,6 +1428,7 @@ | |||||||
|           p_a\qty( \uplambda Z^0,\, \dots,\, \uplambda Z^n ) & = \uplambda^a p_a\qty( Z^0,\, \dots,\, Z^n ) |           p_a\qty( \uplambda Z^0,\, \dots,\, \uplambda Z^n ) & = \uplambda^a p_a\qty( Z^0,\, \dots,\, Z^n ) | ||||||
|         \end{cases} |         \end{cases} | ||||||
|       \end{equation*} |       \end{equation*} | ||||||
|  |       \hfill\cite{Green, Hübsch (1987); Hübsch (1992)} | ||||||
|     \end{block} |     \end{block} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
| @@ -1452,7 +1471,7 @@ | |||||||
|         \qquad |         \qquad | ||||||
|         \text{s.t.} |         \text{s.t.} | ||||||
|         \qquad |         \qquad | ||||||
|         \lim\limits_{n \to \infty} f( M;\, w ) = \lim\limits_{n \to \infty} \abs{\mathscr{R}( M ) - \mathscr{R}_n( M;\, w )} = 0 |         \lim\limits_{n \to \infty} \abs{\mathscr{R}( M ) - \mathscr{R}_n( M;\, w )} = 0 | ||||||
|       \end{equation*} |       \end{equation*} | ||||||
|     \end{block} |     \end{block} | ||||||
|   \end{frame} |   \end{frame} | ||||||
| @@ -1542,17 +1561,21 @@ | |||||||
|     \centering |     \centering | ||||||
|     \includegraphics[width=0.85\linewidth]{img/ml_map} |     \includegraphics[width=0.85\linewidth]{img/ml_map} | ||||||
|      |      | ||||||
|     \pause |  | ||||||
|  |  | ||||||
|     \begin{tikzpicture}[remember picture, overlay] |     \begin{tikzpicture}[remember picture, overlay] | ||||||
|       \draw[line width=10pt, red, -latex] (-18em,1em) -- (-14.5em, 6em); |       \node[anchor=base] at (16em,18em) {\cite{from scikit-learn.org}}; | ||||||
|       \draw[line width=10pt, red, -latex] (19em, 7em) -- (14em, 4em); |  | ||||||
|     \end{tikzpicture} |     \end{tikzpicture} | ||||||
|  |  | ||||||
|     \pause |     \pause | ||||||
|  |  | ||||||
|     \begin{tikzpicture}[remember picture, overlay] |     \begin{tikzpicture}[remember picture, overlay] | ||||||
|       \draw[line width=4pt, red] (12em,12em) ellipse (2cm and 1.5cm); |       \draw[line width=10pt, red, -latex] (-18em,2em) -- (-14.5em,7.5em); | ||||||
|  |       \draw[line width=10pt, red, -latex] (19em,9em) -- (14em,5em); | ||||||
|  |     \end{tikzpicture} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{tikzpicture}[remember picture, overlay] | ||||||
|  |       \draw[line width=4pt, red] (12em,13em) ellipse (2cm and 1.5cm); | ||||||
|     \end{tikzpicture} |     \end{tikzpicture} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
| @@ -1632,6 +1655,7 @@ | |||||||
|       \begin{column}{0.4\linewidth} |       \begin{column}{0.4\linewidth} | ||||||
|         \centering |         \centering | ||||||
|         \resizebox{\columnwidth}{!}{\import{img}{fc.pgf}} |         \resizebox{\columnwidth}{!}{\import{img}{fc.pgf}} | ||||||
|  |         \hfill\cite{rendition of the neural network in Bull et al.\ (2018)} | ||||||
|       \end{column} |       \end{column} | ||||||
|     \end{columns} |     \end{columns} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user