Add explanations and fix typos

Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
2020-12-03 16:49:07 +01:00
parent 798a7c5c3e
commit 86905c9434

View File

@@ -41,7 +41,7 @@
\\ \\
I.N.F.N.\ -- sezione di Torino I.N.F.N.\ -- sezione di Torino
} }
\date{15th December 2020} \date{18th December 2020}
\usetikzlibrary{decorations.markings} \usetikzlibrary{decorations.markings}
\usetikzlibrary{decorations.pathmorphing} \usetikzlibrary{decorations.pathmorphing}
@@ -378,21 +378,48 @@
% \pause % \pause
\begin{block}{T-duality} \begin{block}{T-duality}
\textbf{Dirichlet b.c.} consequence of \textbf{T-duality} on $p$ directions: \only<2>{%
\begin{equation*} Consider \textbf{closed strings} on $\mathscr{M}^{1,D-1} = \mathscr{M}^{1,D-2} \otimes \mathrm{S}^1( R )$:
\overline{X}( z ) \mapsto - \overline{X}( z ) \begin{equation*}
\quad \begin{split}
\Rightarrow \begin{cases}
\quad \upalpha_0^{D-1} & = \frac{1}{\sqrt{2 \upalpha'}} \qty( n \frac{\upalpha'}{R} + m R )
\eval{\partial_{\upsigma} X^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 \\
\quad \widetilde{\upalpha}_0^{D-1} & = \frac{1}{\sqrt{2 \upalpha'}} \qty( n \frac{\upalpha'}{R} - m R )
\stackrel{T-duality}{\longrightarrow} \end{cases}
\quad \quad
\eval{\partial_{\uptau} \widetilde{X}^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 \Rightarrow
\end{equation*} \quad
thus \textbf{open strings} can be \textbf{constrained} to $D(D - p - 1)$-branes. M^2
\hfill =
\cite{Polchinski (1995, 1996)} -p^{\upmu} p_{\upmu}
& =
\frac{2}{\upalpha'} \qty( \upalpha_0^{D-1} )^2 + \frac{4}{\upalpha'} \qty( \mathrm{N} + a )
\\
& =
\frac{2}{\upalpha'} \qty( \widetilde{\upalpha}_0^{D-1} )^2 + \frac{4}{\upalpha'} \qty( \widetilde{\mathrm{N}} + a )
\end{split}
\end{equation*}
\vfill
}
\only<3->{%
\textbf{Dirichlet b.c.} consequence of \textbf{T-duality} on $p$ directions:
\begin{equation*}
\overline{X}( z ) \mapsto - \overline{X}( z )
\quad
\Rightarrow
\quad
\eval{\partial_{\upsigma} X^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
\quad
\stackrel{T-duality}{\longrightarrow}
\quad
\eval{\partial_{\uptau} \widetilde{X}^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
\end{equation*}
thus \textbf{open strings} can be \textbf{constrained} to $D(D - p - 1)$-branes.
\hfill
\cite{Polchinski (1995, 1996)}
\vfill
}
\end{block} \end{block}
\end{frame} \end{frame}
@@ -744,9 +771,9 @@
\item classical action \textbf{larger} than factorised case \item classical action \textbf{larger} than factorised case
\end{itemize} \end{itemize}
\hspace{0.65\columnwidth}\cite{RF, Pesando (2019)}
\end{column} \end{column}
\end{columns} \end{columns}
\vfill
} }
\end{block} \end{block}
\end{frame} \end{frame}
@@ -975,6 +1002,7 @@
+ +
\frac{1}{2} \qty( \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} )^2 \frac{1}{2} \qty( \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} )^2
\end{equation*} \end{equation*}
\hfill\cite{RF, Pesando (2019)}
\pause \pause
@@ -1144,7 +1172,7 @@
Use \textbf{time-dependent orbifolds} to model \textbf{space-like singularities}: Use \textbf{time-dependent orbifolds} to model \textbf{space-like singularities}:
\begin{center} \begin{center}
divergent \highlight{closed string} aplitudes divergent \highlight{closed string} amplitudes
$\Rightarrow$ $\Rightarrow$
gravitational backreaction? gravitational backreaction?
\end{center} \end{center}
@@ -1257,6 +1285,10 @@
So far: So far:
\begin{itemize} \begin{itemize}
\item field theory presents \textbf{divergences} (even sQED $\rightarrow$ eikonal?) \item field theory presents \textbf{divergences} (even sQED $\rightarrow$ eikonal?)
\pause
\item obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) \textbf{do not work}
\pause \pause
@@ -1280,7 +1312,7 @@
\colon \colon
\qty(% \qty(%
\frac{i}{\sqrt{2 \upalpha'}}\, \frac{i}{\sqrt{2 \upalpha'}}\,
\upxi \cdot \partial^2_x X( x,\, x ) \upxi_{\upalpha} \partial^2_x X^{\upalpha}( x,\, x )
+ +
\qty( \frac{i}{\sqrt{2 \upalpha'}} )^2\, \qty( \frac{i}{\sqrt{2 \upalpha'}} )^2\,
S_{\upalpha\upbeta} S_{\upalpha\upbeta}
@@ -1296,7 +1328,7 @@
\begin{center} \begin{center}
\it \it
string theory cannot do \textbf{better than field theory} (EFT) if the latter \textbf{does not exist} (even a Wilson line around $z$ does not prevent such behaviour) string theory cannot do \textbf{better than field theory} (EFT) if the latter \textbf{does not exist}
\end{center} \end{center}
\end{frame} \end{frame}
@@ -1361,12 +1393,14 @@
\vspace{2em} \vspace{2em}
\begin{center} \begin{center}
\it \it
spacetime singularities are \textbf{hidden into contact terms} and interactions with \textbf{massive states} (the gravitational eikonal deals with massless interactions) divergences are \textbf{hidden into contact terms} and interactions with \textbf{massive states} (the gravitational eikonal deals with massless interactions)
\end{center} \end{center}
\begin{tikzpicture}[remember picture, overlay] \begin{tikzpicture}[remember picture, overlay]
\draw[line width=4pt, red] (0em, 4.5em) rectangle (40em, 1em); \draw[line width=4pt, red] (0em, 4.5em) rectangle (40em, 1em);
\end{tikzpicture} \end{tikzpicture}
\hfill\cite{Arduino, RF, Pesando (2020)}
\end{frame} \end{frame}
@@ -1453,13 +1487,15 @@
\pause \pause
\begin{block}{Machine Learning Approach} \begin{block}{Machine Learning Approach}
What is $\mathscr{R}$? What is $\mathscr{R}$ in \textbf{machine learning} approach?
\begin{equation*} \begin{equation*}
\mathscr{R}( M ) \longrightarrow \mathscr{R}_n( M;\, w ) \mathscr{R}( M ) \longrightarrow \mathscr{R}_n( M;\, w )
\qquad \qquad
\text{s.t.} \text{s.t.}
\qquad \qquad
\lim\limits_{n \to \infty} \abs{\mathscr{R}( M ) - \mathscr{R}_n( M;\, w )} = 0 \exists n > M > 0 \mid \mathcal{L}\qty(\mathscr{R}( M ),\, \mathscr{R}_n( M;\, w )) < \upepsilon
\quad
\forall \upepsilon > 0
\end{equation*} \end{equation*}
\end{block} \end{block}
\end{frame} \end{frame}
@@ -1532,6 +1568,8 @@
Hodge numbers Hodge numbers
\end{center} \end{center}
\hfill\cite{Ruehle (2020); Erbin, RF (2020)}
\pause \pause
\begin{columns} \begin{columns}
@@ -1598,13 +1636,14 @@
\begin{column}{0.5\linewidth} \begin{column}{0.5\linewidth}
\centering \centering
\textbf{Configuration Matrix Only} \textbf{Configuration Matrix Only}
\includegraphics[width=0.8\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_matrix_plots.pdf} \includegraphics[width=0.75\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_matrix_plots.pdf}
\end{column} \end{column}
\hfill\pause \hfill\pause
\begin{column}{0.5\linewidth} \begin{column}{0.5\linewidth}
\centering \centering
\textbf{Best Training Set} \textbf{Best Training Set}
\includegraphics[width=0.8\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_best_plots.pdf} \cite{Erbin, RF (2020)}
\includegraphics[width=0.75\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_best_plots.pdf}
\end{column} \end{column}
\end{columns} \end{columns}
\end{frame} \end{frame}
@@ -1699,7 +1738,9 @@
\begin{column}{0.5\linewidth} \begin{column}{0.5\linewidth}
\centering \centering
\textbf{Best Training Set} \textbf{Best Training Set}
\includegraphics[width=\columnwidth]{img/cicy_best_plots.pdf} \cite{Erbin, RF (2020)}
\only<1>{\includegraphics[width=0.8\columnwidth, trim={0 0 1.65in 0}, clip]{img/cicy_best_plots.pdf}}
\only<2->{\includegraphics[width=\columnwidth]{img/cicy_best_plots.pdf}}
\end{column} \end{column}
\hfill \hfill
\begin{column}{0.5\linewidth} \begin{column}{0.5\linewidth}