Add explanations and fix typos
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										63
									
								
								thesis.tex
									
									
									
									
									
								
							
							
						
						
									
										63
									
								
								thesis.tex
									
									
									
									
									
								
							| @@ -41,7 +41,7 @@ | |||||||
|   \\ |   \\ | ||||||
|   I.N.F.N.\ -- sezione di Torino |   I.N.F.N.\ -- sezione di Torino | ||||||
| } | } | ||||||
| \date{15th December 2020} | \date{18th December 2020} | ||||||
|  |  | ||||||
| \usetikzlibrary{decorations.markings} | \usetikzlibrary{decorations.markings} | ||||||
| \usetikzlibrary{decorations.pathmorphing} | \usetikzlibrary{decorations.pathmorphing} | ||||||
| @@ -378,6 +378,31 @@ | |||||||
|     % \pause |     % \pause | ||||||
|  |  | ||||||
|     \begin{block}{T-duality} |     \begin{block}{T-duality} | ||||||
|  |       \only<2>{% | ||||||
|  |         Consider \textbf{closed strings} on $\mathscr{M}^{1,D-1} = \mathscr{M}^{1,D-2} \otimes \mathrm{S}^1( R )$: | ||||||
|  |         \begin{equation*} | ||||||
|  |           \begin{split} | ||||||
|  |             \begin{cases} | ||||||
|  |               \upalpha_0^{D-1} & = \frac{1}{\sqrt{2 \upalpha'}} \qty( n \frac{\upalpha'}{R} + m R ) | ||||||
|  |               \\ | ||||||
|  |               \widetilde{\upalpha}_0^{D-1} & = \frac{1}{\sqrt{2 \upalpha'}} \qty( n \frac{\upalpha'}{R} - m R ) | ||||||
|  |             \end{cases} | ||||||
|  |             \quad | ||||||
|  |             \Rightarrow | ||||||
|  |             \quad | ||||||
|  |             M^2 | ||||||
|  |             = | ||||||
|  |             -p^{\upmu} p_{\upmu} | ||||||
|  |             & = | ||||||
|  |             \frac{2}{\upalpha'} \qty( \upalpha_0^{D-1} )^2 + \frac{4}{\upalpha'} \qty( \mathrm{N} + a ) | ||||||
|  |             \\ | ||||||
|  |             & = | ||||||
|  |             \frac{2}{\upalpha'} \qty( \widetilde{\upalpha}_0^{D-1} )^2 + \frac{4}{\upalpha'} \qty( \widetilde{\mathrm{N}} + a ) | ||||||
|  |           \end{split} | ||||||
|  |         \end{equation*} | ||||||
|  |         \vfill | ||||||
|  |       } | ||||||
|  |       \only<3->{% | ||||||
|         \textbf{Dirichlet b.c.} consequence of \textbf{T-duality} on $p$ directions: |         \textbf{Dirichlet b.c.} consequence of \textbf{T-duality} on $p$ directions: | ||||||
|         \begin{equation*} |         \begin{equation*} | ||||||
|           \overline{X}( z ) \mapsto - \overline{X}( z ) |           \overline{X}( z ) \mapsto - \overline{X}( z ) | ||||||
| @@ -393,6 +418,8 @@ | |||||||
|         thus \textbf{open strings} can be \textbf{constrained} to $D(D - p - 1)$-branes. |         thus \textbf{open strings} can be \textbf{constrained} to $D(D - p - 1)$-branes. | ||||||
|         \hfill |         \hfill | ||||||
|         \cite{Polchinski (1995, 1996)} |         \cite{Polchinski (1995, 1996)} | ||||||
|  |         \vfill | ||||||
|  |       } | ||||||
|     \end{block} |     \end{block} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
| @@ -744,9 +771,9 @@ | |||||||
|  |  | ||||||
|               \item classical action \textbf{larger} than factorised case |               \item classical action \textbf{larger} than factorised case | ||||||
|             \end{itemize} |             \end{itemize} | ||||||
|  |             \hspace{0.65\columnwidth}\cite{RF, Pesando (2019)} | ||||||
|           \end{column} |           \end{column} | ||||||
|         \end{columns} |         \end{columns} | ||||||
|         \vfill |  | ||||||
|       } |       } | ||||||
|     \end{block} |     \end{block} | ||||||
|   \end{frame} |   \end{frame} | ||||||
| @@ -975,6 +1002,7 @@ | |||||||
|       + |       + | ||||||
|       \frac{1}{2} \qty( \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} )^2 |       \frac{1}{2} \qty( \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} )^2 | ||||||
|     \end{equation*} |     \end{equation*} | ||||||
|  |     \hfill\cite{RF, Pesando (2019)} | ||||||
|  |  | ||||||
|     \pause |     \pause | ||||||
|  |  | ||||||
| @@ -1144,7 +1172,7 @@ | |||||||
|     Use \textbf{time-dependent orbifolds} to model \textbf{space-like singularities}: |     Use \textbf{time-dependent orbifolds} to model \textbf{space-like singularities}: | ||||||
|      |      | ||||||
|     \begin{center} |     \begin{center} | ||||||
|       divergent \highlight{closed string} aplitudes |       divergent \highlight{closed string} amplitudes | ||||||
|       $\Rightarrow$ |       $\Rightarrow$ | ||||||
|       gravitational backreaction? |       gravitational backreaction? | ||||||
|     \end{center} |     \end{center} | ||||||
| @@ -1260,6 +1288,10 @@ | |||||||
|  |  | ||||||
|         \pause |         \pause | ||||||
|  |  | ||||||
|  |       \item obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) \textbf{do not work} | ||||||
|  |          | ||||||
|  |         \pause | ||||||
|  |  | ||||||
|       \item divergences are \textbf{not (only) gravitational} |       \item divergences are \textbf{not (only) gravitational} | ||||||
|  |  | ||||||
|         \pause |         \pause | ||||||
| @@ -1280,7 +1312,7 @@ | |||||||
|         \colon |         \colon | ||||||
|         \qty(% |         \qty(% | ||||||
|           \frac{i}{\sqrt{2 \upalpha'}}\, |           \frac{i}{\sqrt{2 \upalpha'}}\, | ||||||
|           \upxi \cdot \partial^2_x X( x,\, x ) |           \upxi_{\upalpha} \partial^2_x X^{\upalpha}( x,\, x ) | ||||||
|           + |           + | ||||||
|           \qty( \frac{i}{\sqrt{2 \upalpha'}} )^2\, |           \qty( \frac{i}{\sqrt{2 \upalpha'}} )^2\, | ||||||
|           S_{\upalpha\upbeta} |           S_{\upalpha\upbeta} | ||||||
| @@ -1296,7 +1328,7 @@ | |||||||
|  |  | ||||||
|     \begin{center} |     \begin{center} | ||||||
|       \it |       \it | ||||||
|       string theory cannot do \textbf{better than field theory} (EFT) if the latter \textbf{does not exist} (even a Wilson line around $z$ does not prevent such behaviour) |       string theory cannot do \textbf{better than field theory} (EFT) if the latter \textbf{does not exist} | ||||||
|     \end{center} |     \end{center} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
| @@ -1361,12 +1393,14 @@ | |||||||
|     \vspace{2em} |     \vspace{2em} | ||||||
|     \begin{center} |     \begin{center} | ||||||
|       \it |       \it | ||||||
|       spacetime singularities are \textbf{hidden into contact terms} and interactions with \textbf{massive states} (the gravitational eikonal deals with massless interactions) |       divergences are \textbf{hidden into contact terms} and interactions with \textbf{massive states} (the gravitational eikonal deals with massless interactions) | ||||||
|     \end{center} |     \end{center} | ||||||
|  |  | ||||||
|     \begin{tikzpicture}[remember picture, overlay] |     \begin{tikzpicture}[remember picture, overlay] | ||||||
|       \draw[line width=4pt, red] (0em, 4.5em) rectangle (40em, 1em); |       \draw[line width=4pt, red] (0em, 4.5em) rectangle (40em, 1em); | ||||||
|     \end{tikzpicture} |     \end{tikzpicture} | ||||||
|  |  | ||||||
|  |     \hfill\cite{Arduino, RF, Pesando (2020)} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -1453,13 +1487,15 @@ | |||||||
|     \pause |     \pause | ||||||
|  |  | ||||||
|     \begin{block}{Machine Learning Approach} |     \begin{block}{Machine Learning Approach} | ||||||
|       What is $\mathscr{R}$? |       What is $\mathscr{R}$ in \textbf{machine learning} approach? | ||||||
|       \begin{equation*} |       \begin{equation*} | ||||||
|         \mathscr{R}( M ) \longrightarrow \mathscr{R}_n( M;\, w ) |         \mathscr{R}( M ) \longrightarrow \mathscr{R}_n( M;\, w ) | ||||||
|         \qquad |         \qquad | ||||||
|         \text{s.t.} |         \text{s.t.} | ||||||
|         \qquad |         \qquad | ||||||
|         \lim\limits_{n \to \infty} \abs{\mathscr{R}( M ) - \mathscr{R}_n( M;\, w )} = 0 |         \exists n > M > 0 \mid \mathcal{L}\qty(\mathscr{R}( M ),\, \mathscr{R}_n( M;\, w )) < \upepsilon | ||||||
|  |         \quad | ||||||
|  |         \forall \upepsilon > 0 | ||||||
|       \end{equation*} |       \end{equation*} | ||||||
|     \end{block} |     \end{block} | ||||||
|   \end{frame} |   \end{frame} | ||||||
| @@ -1532,6 +1568,8 @@ | |||||||
|       Hodge numbers |       Hodge numbers | ||||||
|     \end{center} |     \end{center} | ||||||
|  |  | ||||||
|  |     \hfill\cite{Ruehle (2020); Erbin, RF (2020)} | ||||||
|  |  | ||||||
|     \pause |     \pause | ||||||
|  |  | ||||||
|     \begin{columns} |     \begin{columns} | ||||||
| @@ -1598,13 +1636,14 @@ | |||||||
|       \begin{column}{0.5\linewidth} |       \begin{column}{0.5\linewidth} | ||||||
|         \centering |         \centering | ||||||
|         \textbf{Configuration Matrix Only} |         \textbf{Configuration Matrix Only} | ||||||
|         \includegraphics[width=0.8\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_matrix_plots.pdf} |         \includegraphics[width=0.75\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_matrix_plots.pdf} | ||||||
|       \end{column} |       \end{column} | ||||||
|       \hfill\pause |       \hfill\pause | ||||||
|       \begin{column}{0.5\linewidth} |       \begin{column}{0.5\linewidth} | ||||||
|         \centering |         \centering | ||||||
|         \textbf{Best Training Set} |         \textbf{Best Training Set} | ||||||
|         \includegraphics[width=0.8\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_best_plots.pdf} |         \cite{Erbin, RF (2020)} | ||||||
|  |         \includegraphics[width=0.75\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_best_plots.pdf} | ||||||
|       \end{column} |       \end{column} | ||||||
|     \end{columns} |     \end{columns} | ||||||
|   \end{frame} |   \end{frame} | ||||||
| @@ -1699,7 +1738,9 @@ | |||||||
|       \begin{column}{0.5\linewidth} |       \begin{column}{0.5\linewidth} | ||||||
|         \centering |         \centering | ||||||
|         \textbf{Best Training Set} |         \textbf{Best Training Set} | ||||||
|         \includegraphics[width=\columnwidth]{img/cicy_best_plots.pdf} |         \cite{Erbin, RF (2020)} | ||||||
|  |         \only<1>{\includegraphics[width=0.8\columnwidth, trim={0 0 1.65in 0}, clip]{img/cicy_best_plots.pdf}} | ||||||
|  |         \only<2->{\includegraphics[width=\columnwidth]{img/cicy_best_plots.pdf}} | ||||||
|       \end{column} |       \end{column} | ||||||
|       \hfill |       \hfill | ||||||
|       \begin{column}{0.5\linewidth} |       \begin{column}{0.5\linewidth} | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user