Shorter and contained version
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
BIN
img/unito.pdf
BIN
img/unito.pdf
Binary file not shown.
BIN
img/unito.png
Normal file
BIN
img/unito.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 199 KiB |
BIN
img/vector-tensor-features_orig.pdf
Normal file
BIN
img/vector-tensor-features_orig.pdf
Normal file
Binary file not shown.
520
thesis.tex
520
thesis.tex
@@ -59,7 +59,7 @@
|
|||||||
\newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}}
|
\newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}}
|
||||||
\renewcommand{\cite}[1]{{\tiny{\fcolorbox{red}{red!10}{[#1]}}}}
|
\renewcommand{\cite}[1]{{\tiny{\fcolorbox{red}{red!10}{[#1]}}}}
|
||||||
|
|
||||||
\newcommand{\firstlogo}{img/unito.pdf}
|
\newcommand{\firstlogo}{img/unito.png}
|
||||||
\newcommand{\thefirstlogo}{%
|
\newcommand{\thefirstlogo}{%
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
@@ -237,12 +237,6 @@
|
|||||||
$\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$
|
$\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$
|
||||||
\\
|
\\
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\begin{center}
|
|
||||||
\highlight{Conformal properties fixed by \textbf{OPE}s.}
|
|
||||||
\end{center}
|
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
@@ -311,7 +305,7 @@
|
|||||||
|
|
||||||
\item $N = 1$ \textbf{supersymmetry} preserved in 4D
|
\item $N = 1$ \textbf{supersymmetry} preserved in 4D
|
||||||
|
|
||||||
\item algebra of $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ in arising \textbf{gauge group}
|
\item contains algebra of $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{column}
|
\end{column}
|
||||||
|
|
||||||
@@ -326,8 +320,8 @@
|
|||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\begin{columns}[T, totalwidth=0.95\linewidth]
|
\begin{columns}[T, totalwidth=0.95\linewidth]
|
||||||
\begin{column}{0.475\linewidth}
|
\begin{column}{0.55\linewidth}
|
||||||
\textbf{Kähler manifolds} $\qty( M,\, g )$ such that:
|
\textbf{Calabi--Yau manifolds} $\qty( M,\, g )$ such that:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $\dim\limits_{\mathds{C}} M = m$
|
\item $\dim\limits_{\mathds{C}} M = m$
|
||||||
|
|
||||||
@@ -335,23 +329,25 @@
|
|||||||
|
|
||||||
\item $\mathrm{Ric}( g ) \equiv 0$ (equiv.\ $c_1\qty( M ) \equiv 0$)
|
\item $\mathrm{Ric}( g ) \equiv 0$ (equiv.\ $c_1\qty( M ) \equiv 0$)
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
\hspace{1em}\cite{Calabi (1957), Yau (1977), Candelas \emph{et al.} (1985)}
|
||||||
\end{column}
|
\end{column}
|
||||||
\hfill
|
\hfill
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
\begin{column}{0.475\linewidth}
|
\begin{column}{0.4\linewidth}
|
||||||
Characterised by \textbf{Hodge numbers}
|
Characterised by \textbf{Hodge numbers}
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
h^{r,\,s} = \dim\limits_{\mathds{C}} H_{\overline{\partial}}^{r,\,s}\qty( M,\, \mathds{C} )
|
h^{r,\,s} = \dim\limits_{\mathds{C}} H_{\overline{\partial}}^{r,\,s}\qty( M,\, \mathds{C} )
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
counting the no.\ of harmonic $(r,s)$-forms.
|
(no.\ of harmonic $(r,s)$-forms).
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{D-branes and Open Strings}
|
\begin{frame}{D-branes and Open Strings}
|
||||||
Polyakov's action naturally introduces \textbf{Neumann b.c.} for \textbf{open strings}:
|
Polyakov's action naturally introduces \textbf{Neumann b.c.}:
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\eval{\partial_{\upsigma} X\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
|
\eval{\partial_{\upsigma} X\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
@@ -441,46 +437,51 @@
|
|||||||
\centering
|
\centering
|
||||||
\resizebox{0.5\columnwidth}{!}{\import{img}{chanpaton.pgf}}
|
\resizebox{0.5\columnwidth}{!}{\import{img}{chanpaton.pgf}}
|
||||||
|
|
||||||
\cite{Chan, Paton (1969)}
|
\hfill\cite{Chan, Paton (1969)}
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\ket{n;\, r}
|
\ket{n;\, r}
|
||||||
=
|
=
|
||||||
\sum\limits_{i,\, j = 1}^N
|
\sum\limits_{i,\, j = 1}^N
|
||||||
\ket{n;\, i,\, j}\,
|
\ket{n;\, i,\, j}\,
|
||||||
\tensor{\uplambda}{^r_{ij}}
|
\tensor{\uplambda}{^r_{ij}}
|
||||||
|
\quad
|
||||||
|
\Rightarrow
|
||||||
|
\quad
|
||||||
|
\highlight{\mathrm{U}(N)}
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
\end{column}
|
\end{column}
|
||||||
\hfill
|
\hfill
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
\begin{column}{0.475\linewidth}
|
\begin{column}{0.5\linewidth}
|
||||||
\begin{block}{Chan--Paton Factors}
|
\centering
|
||||||
When branes are \textbf{coincident}:
|
\resizebox{\columnwidth}{!}{\import{img}{smbranes.pgf}}
|
||||||
\begin{equation*}
|
|
||||||
\bigoplus\limits_{r = 1}^N \mathrm{U}_r(1)
|
% \begin{block}{Symmetry Enhancement}
|
||||||
\quad
|
% When branes are \textbf{coincident}:
|
||||||
\longrightarrow
|
% \begin{equation*}
|
||||||
\quad
|
% \bigoplus\limits_{r = 1}^N \mathrm{U}_r(1)
|
||||||
\mathrm{U}( N )
|
% \quad
|
||||||
\end{equation*}
|
% \longrightarrow
|
||||||
\end{block}
|
% \quad
|
||||||
\pause
|
% \mathrm{U}( N )
|
||||||
\highlight{Build gauge bosons, fermions and scalars.}
|
% \end{equation*}
|
||||||
|
% \end{block}
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Standard Model-like Scenarios}
|
% \begin{frame}{Standard Model-like Scenarios}
|
||||||
\centering
|
% \centering
|
||||||
\resizebox{0.8\linewidth}{!}{\import{img}{smbranes.pgf}}
|
% \resizebox{0.8\linewidth}{!}{\import{img}{smbranes.pgf}}
|
||||||
\hfill\cite{Zwiebach (2009)}
|
% \hfill\cite{Zwiebach (2009)}
|
||||||
\end{frame}
|
% \end{frame}
|
||||||
|
|
||||||
|
|
||||||
\subsection[D-branes at Angles]{D-branes Intersecting at Angles}
|
\subsection[D-branes at Angles]{D-branes Intersecting at Angles}
|
||||||
|
|
||||||
\begin{frame}{Intersecting D-branes}
|
\begin{frame}{Intersecting D-branes}
|
||||||
Consider \highlight{$N$ intersecting $D6$-branes} filling $\mathscr{M}^{1,3}$ and \textbf{embedded in} $\mathds{R}^6$
|
Consider \highlight{$3$ intersecting $D6$-branes} filling $\mathscr{M}^{1,3}$ and \textbf{embedded in} $\mathds{R}^6$
|
||||||
|
|
||||||
\begin{equationblock}{Twist Fields Correlators}
|
\begin{equationblock}{Twist Fields Correlators}
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
@@ -512,7 +513,7 @@
|
|||||||
|
|
||||||
\item \textbf{relative rotations} are $\mathrm{SO}(2) \simeq \mathrm{U}(1)$ elements
|
\item \textbf{relative rotations} are $\mathrm{SO}(2) \simeq \mathrm{U}(1)$ elements
|
||||||
|
|
||||||
\item $S_{E\, (\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) \sim \text{Area}\qty( \qty{ f_{(t)},\, \mathrm{R}_{(t)} }_{1 \le t \le N_B} )$
|
\item $S_{E}^{(\text{cl})}\qty( \qty{ x_{(t)},\, \mathrm{M}_{(t)} }_{1 \le t \le N_B} ) \sim \text{Area}\qty( \qty{ f_{(t)},\, \mathrm{R}_{(t)} }_{1 \le t \le N_B} )$
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\hfill\cite{Cremades, Ibanez, Marchesano (2003); Pesando (2012)}
|
\hfill\cite{Cremades, Ibanez, Marchesano (2003); Pesando (2012)}
|
||||||
@@ -523,8 +524,6 @@
|
|||||||
\begin{frame}{$\mathrm{SO}(4)$ Rotations}
|
\begin{frame}{$\mathrm{SO}(4)$ Rotations}
|
||||||
Consider \highlight{$\mathds{R}^4 \times \mathds{R}^2$} (focus on $\mathds{R}^4$):
|
Consider \highlight{$\mathds{R}^4 \times \mathds{R}^2$} (focus on $\mathds{R}^4$):
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\begin{columns}
|
\begin{columns}
|
||||||
\begin{column}{0.4\linewidth}
|
\begin{column}{0.4\linewidth}
|
||||||
\centering
|
\centering
|
||||||
@@ -538,12 +537,10 @@
|
|||||||
\tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I
|
\tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I
|
||||||
\in \mathds{R}^4
|
\in \mathds{R}^4
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
\pause
|
|
||||||
where
|
where
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )}
|
R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )}
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
\pause
|
|
||||||
that is
|
that is
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\qty[ R_{(t)} ]
|
\qty[ R_{(t)} ]
|
||||||
@@ -554,11 +551,7 @@
|
|||||||
\end{columns}
|
\end{columns}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Boundary Conditions}
|
\begin{frame}{Boundary Conditions and Open Strings}
|
||||||
What are the consequences for \highlight{open strings?}
|
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\begin{columns}
|
\begin{columns}
|
||||||
\begin{column}{0.6\linewidth}
|
\begin{column}{0.6\linewidth}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
@@ -566,13 +559,13 @@
|
|||||||
|
|
||||||
\item $x_{(t)} < x_{(t-1)}$ \textbf{worldsheet intersection points}
|
\item $x_{(t)} < x_{(t-1)}$ \textbf{worldsheet intersection points}
|
||||||
|
|
||||||
\item $X_{(t)}^{1,\, 2}$ are \textbf{Neumann}, $X_{(t)}^{3,\, 4}$ are \textbf{Dirichlet}
|
% \item $X_{(t)}^{1,\, 2}$ are \textbf{Neumann}, $X_{(t)}^{3,\, 4}$ are \textbf{Dirichlet}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{column}
|
\end{column}
|
||||||
|
\hfill
|
||||||
\begin{column}{0.4\linewidth}
|
\begin{column}{0.4\linewidth}
|
||||||
\centering
|
\centering
|
||||||
\resizebox{0.9\columnwidth}{!}{\import{img}{branchcuts.pgf}}
|
\resizebox{\columnwidth}{!}{\import{img}{branchcuts.pgf}}
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
|
|
||||||
@@ -668,27 +661,31 @@
|
|||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Hypergeometric Basis}
|
\begin{frame}{Hypergeometric Basis}
|
||||||
\begin{columns}
|
\begin{columns}[totalwidth=0.95\linewidth]
|
||||||
\begin{column}{0.3\linewidth}
|
\begin{column}{0.4\linewidth}
|
||||||
\centering
|
\centering
|
||||||
\resizebox{0.9\columnwidth}{!}{\import{img}{threebranes_plane.pgf}}
|
\resizebox{\columnwidth}{!}{\import{img}{threebranes_plane.pgf}}
|
||||||
\end{column}
|
\end{column}
|
||||||
\hfill
|
\hfill
|
||||||
\begin{column}{0.7\linewidth}
|
\begin{column}{0.6\linewidth}
|
||||||
Sum over \highlight{all contributions:}
|
Sum over \highlight{all contributions:}
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\partial_z \mathcal{X}( z )
|
\partial_z \mathcal{X}( z )
|
||||||
& =
|
& =
|
||||||
|
\pdv{\omega_z}{z}\,
|
||||||
\sum\limits_{l,\, r = -\infty}^{+\infty} c_{lr}\,
|
\sum\limits_{l,\, r = -\infty}^{+\infty} c_{lr}\,
|
||||||
\qty( - \upomega_z )^{A_{lr}}\,
|
\qty( - \upomega_z )^{A_{lr}}\,
|
||||||
\qty( 1 - \upomega_z )^{B_{lr}}\,
|
\qty( 1 - \upomega_z )^{B_{lr}}\,
|
||||||
|
\\
|
||||||
|
& \times
|
||||||
B_{0,\, l}^{(L)}( \omega_z )\,
|
B_{0,\, l}^{(L)}( \omega_z )\,
|
||||||
\qty( B_{0,\, r}^{(R)}( \omega_z ) )^T
|
\qty( B_{0,\, r}^{(R)}( \omega_z ) )^T
|
||||||
\end{split}
|
\end{split}
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
|
\vfill
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
@@ -717,23 +714,17 @@
|
|||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
\item rotation matrix $=$ monodromy matrix
|
\item rotation matrix $=$ monodromy matrix
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item contiguity relations $\Rightarrow$ independent hypergeometrics
|
\item contiguity relations $\Rightarrow$ independent hypergeometrics
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item finite action $\Rightarrow$ $2$ solutions (no.\ of d.o.f.\ is correctly saturated)
|
\item finite action $\Rightarrow$ $2$ solutions (no.\ of d.o.f.\ is correctly saturated)
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item boundary conditions $\Rightarrow$ fix free constants $c_{lr}$
|
\item boundary conditions $\Rightarrow$ fix free constants $c_{lr}$
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
\begin{block}{Physical Interpretation}
|
\begin{block}{Physical Interpretation}
|
||||||
\only<5>{%
|
\only<2>{%
|
||||||
\begin{columns}
|
\begin{columns}
|
||||||
\begin{column}{0.4\linewidth}
|
\begin{column}{0.4\linewidth}
|
||||||
\centering
|
\centering
|
||||||
@@ -756,7 +747,7 @@
|
|||||||
\end{columns}
|
\end{columns}
|
||||||
\vfill
|
\vfill
|
||||||
}
|
}
|
||||||
\only<6->{%
|
\only<3->{%
|
||||||
\begin{columns}
|
\begin{columns}
|
||||||
\begin{column}{0.35\linewidth}
|
\begin{column}{0.35\linewidth}
|
||||||
\centering
|
\centering
|
||||||
@@ -771,7 +762,7 @@
|
|||||||
|
|
||||||
\item classical action \textbf{larger} than factorised case
|
\item classical action \textbf{larger} than factorised case
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\hspace{0.65\columnwidth}\cite{RF, Pesando (2019)}
|
\hspace{0.65\columnwidth}\cite{\textbf{RF}, Pesando (2019)}
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
}
|
}
|
||||||
@@ -809,46 +800,45 @@
|
|||||||
\end{equationblock}
|
\end{equationblock}
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
|
\vfill
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
\begin{equationblock}{Stress-energy Tensor}
|
\begin{equation*}
|
||||||
\begin{equation*}
|
\mathcal{T}_{\pm\pm}( \upxi_{\pm} )
|
||||||
\mathcal{T}_{\pm\pm}( \upxi_{\pm} )
|
=
|
||||||
|
-i\, \frac{T}{4}\,
|
||||||
|
\uppsi^*_{\pm,\, I}( \upxi_{\pm} )\,
|
||||||
|
\overset{\leftrightarrow}{\partial} \uppsi^I_{\pm}( \upxi_{\pm} )
|
||||||
|
\quad
|
||||||
|
\Rightarrow
|
||||||
|
\quad
|
||||||
|
\begin{cases}
|
||||||
|
\dot{\mathrm{H}}( \uptau )
|
||||||
|
&
|
||||||
|
% =
|
||||||
|
% \partial_{\uptau}
|
||||||
|
% \qty(%
|
||||||
|
% \int\limits_0^{\uppi} \dd{\upsigma}
|
||||||
|
% \mathcal{T}_{\uptau\uptau}( \uptau, \upsigma )
|
||||||
|
% )
|
||||||
=
|
=
|
||||||
-i\, \frac{T}{4}\,
|
0
|
||||||
\uppsi^*_{\pm,\, I}( \upxi_{\pm} )\,
|
\quad \Leftrightarrow \quad
|
||||||
\overset{\leftrightarrow}{\partial} \uppsi^I_{\pm}( \upxi_{\pm} )
|
\uptau \in \qty( \uptau_{(t)},\, \uptau_{(t-1)} )
|
||||||
\quad
|
\\
|
||||||
\Rightarrow
|
\dot{\mathrm{P}}( \uptau )
|
||||||
\quad
|
&
|
||||||
\begin{cases}
|
% =
|
||||||
\dot{\mathrm{H}}( \uptau )
|
% \partial_{\uptau}
|
||||||
&
|
% \qty(%
|
||||||
% =
|
% \int\limits_0^{\uppi} \dd{\upsigma}
|
||||||
% \partial_{\uptau}
|
% \mathcal{T}_{\uptau\upsigma}( \uptau, \upsigma )
|
||||||
% \qty(%
|
% )
|
||||||
% \int\limits_0^{\uppi} \dd{\upsigma}
|
\neq
|
||||||
% \mathcal{T}_{\uptau\uptau}( \uptau, \upsigma )
|
0
|
||||||
% )
|
\end{cases}
|
||||||
=
|
\end{equation*}
|
||||||
0
|
|
||||||
\quad \Leftrightarrow \quad
|
|
||||||
\uptau \in \qty( \uptau_{(t)},\, \uptau_{(t-1)} )
|
|
||||||
\\
|
|
||||||
\dot{\mathrm{P}}( \uptau )
|
|
||||||
&
|
|
||||||
% =
|
|
||||||
% \partial_{\uptau}
|
|
||||||
% \qty(%
|
|
||||||
% \int\limits_0^{\uppi} \dd{\upsigma}
|
|
||||||
% \mathcal{T}_{\uptau\upsigma}( \uptau, \upsigma )
|
|
||||||
% )
|
|
||||||
\neq
|
|
||||||
0
|
|
||||||
\end{cases}
|
|
||||||
\end{equation*}
|
|
||||||
\end{equationblock}
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Conserved Product and Operators}
|
\begin{frame}{Conserved Product and Operators}
|
||||||
@@ -912,7 +902,7 @@
|
|||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Twisted Complex Fermions}
|
\begin{frame}{Twisted Complex Fermions}
|
||||||
Consider the case $R_{(t)} = e^{i \uppi \upalpha_{(t)}} \in \mathrm{U}( 1 )$:
|
Consider $R_{(t)} = e^{i \uppi \upalpha_{(t)}} \in \mathrm{U}( 1 )$:
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\Uppsi( x_{(t)} + e^{2\uppi i} \updelta )
|
\Uppsi( x_{(t)} + e^{2\uppi i} \updelta )
|
||||||
=
|
=
|
||||||
@@ -969,6 +959,10 @@
|
|||||||
\begin{columns}
|
\begin{columns}
|
||||||
\begin{column}{0.6\linewidth}
|
\begin{column}{0.6\linewidth}
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
|
\braket{\qty{x_{(t)}}} = 1
|
||||||
|
\quad
|
||||||
|
\Rightarrow
|
||||||
|
\quad
|
||||||
\mathrm{L}
|
\mathrm{L}
|
||||||
=
|
=
|
||||||
n_{(t)} + \widetilde{n}_{(t)}
|
n_{(t)} + \widetilde{n}_{(t)}
|
||||||
@@ -986,7 +980,7 @@
|
|||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Stress-energy Tensor and CFT Approach}
|
\begin{frame}{Stress-energy Tensor and CFT Approach}
|
||||||
Compute the OPEs leading to the \textbf{stress-energy tensor:}
|
Compute the OPEs leading to the \highlight{time dependent} \textbf{stress-energy tensor:}
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\mathcal{T}( z )
|
\mathcal{T}( z )
|
||||||
=
|
=
|
||||||
@@ -1002,7 +996,7 @@
|
|||||||
+
|
+
|
||||||
\frac{1}{2} \qty( \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} )^2
|
\frac{1}{2} \qty( \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} )^2
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
\hfill\cite{RF, Pesando (2019)}
|
\hfill\cite{\textbf{RF}, Pesando (2019)}
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
@@ -1021,7 +1015,7 @@
|
|||||||
\begin{equationblock}{Equivalence with Bosonization}
|
\begin{equationblock}{Equivalence with Bosonization}
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\partial_{x_{(t)}} \braket{\qty{x_{(t)}}}
|
\partial_{x_{(t)}} \ln \braket{\qty{x_{(t)}}}
|
||||||
& =
|
& =
|
||||||
\oint\limits_{x_{(t)}} \frac{\dd{z}}{2\uppi i}
|
\oint\limits_{x_{(t)}} \frac{\dd{z}}{2\uppi i}
|
||||||
\frac{%
|
\frac{%
|
||||||
@@ -1046,21 +1040,11 @@
|
|||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item (semi-)phenomenological models involve \textbf{twist and spin} fields and \textbf{open strings}
|
\item (semi-)phenomenological models involve \textbf{twist and spin} fields and \textbf{open strings}
|
||||||
|
|
||||||
\pause
|
\item framework for \textbf{bosonic} open strings with \textbf{intersecting D-branes}
|
||||||
|
|
||||||
\item general framework for \textbf{bosonic} open strings with \textbf{intersecting D-branes}
|
\item \textbf{spin fields} as \textbf{boundary changing operators} (hidden in \textbf{defects})
|
||||||
|
|
||||||
\pause
|
\item framework for amplitudes (extension to (non) Abelian twist/spin fields?)
|
||||||
|
|
||||||
\item leading contribution for \textbf{twist fields}
|
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item \textbf{spin fields} as \textbf{boundary changing operators} on \textbf{defects}
|
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item alternative framework for amplitudes (extension to (non) Abelian twist/spin fields?)
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
@@ -1072,7 +1056,7 @@
|
|||||||
|
|
||||||
\begin{frame}{A Few Words on a Theory of Everything}
|
\begin{frame}{A Few Words on a Theory of Everything}
|
||||||
\begin{center}
|
\begin{center}
|
||||||
string theory = theory of everything = nuclear forces + gravity
|
\textbf{string theory} = theory of everything = \textbf{nuclear forces + gravity}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
@@ -1109,64 +1093,64 @@
|
|||||||
\end{columns}
|
\end{columns}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Orbifolds}
|
% \begin{frame}{Orbifolds}
|
||||||
\begin{columns}[T]
|
% \begin{columns}[T]
|
||||||
\begin{column}{0.475\linewidth}
|
% \begin{column}{0.475\linewidth}
|
||||||
\begin{tabular}{@{}p{0.975\columnwidth}@{}}
|
% \begin{tabular}{@{}p{0.975\columnwidth}@{}}
|
||||||
\textbf{Mathematics}
|
% \textbf{Mathematics}
|
||||||
\\
|
% \\
|
||||||
\toprule
|
% \toprule
|
||||||
\begin{itemize}
|
% \begin{itemize}
|
||||||
\item manifold $M$
|
% \item manifold $M$
|
||||||
|
|
||||||
\item (Lie) group $G$
|
% \item (Lie) group $G$
|
||||||
|
|
||||||
\item \emph{stabilizer} $G_p = \qty{g \in G \mid gp = p \in M}$
|
% \item \emph{stabilizer} $G_p = \qty{g \in G \mid gp = p \in M}$
|
||||||
|
|
||||||
\item \emph{orbit} $Gp = \qty{gp \in M \mid g \in G}$
|
% \item \emph{orbit} $Gp = \qty{gp \in M \mid g \in G}$
|
||||||
|
|
||||||
\item charts $\upphi = \uppi \circ \mathscr{P}$ where:
|
% \item charts $\upphi = \uppi \circ \mathscr{P}$ where:
|
||||||
|
|
||||||
\begin{itemize}
|
% \begin{itemize}
|
||||||
\item $\mathscr{P}\colon U \subset \mathds{R}^n \to U / G$
|
% \item $\mathscr{P}\colon U \subset \mathds{R}^n \to U / G$
|
||||||
|
|
||||||
\item $\uppi\colon U / G \to M$
|
% \item $\uppi\colon U / G \to M$
|
||||||
\end{itemize}
|
% \end{itemize}
|
||||||
\end{itemize}
|
% \end{itemize}
|
||||||
\end{tabular}
|
% \end{tabular}
|
||||||
\end{column}
|
% \end{column}
|
||||||
\hfill
|
% \hfill
|
||||||
\begin{column}{0.475\linewidth}
|
% \begin{column}{0.475\linewidth}
|
||||||
\begin{tabular}{@{}p{0.975\columnwidth}@{}}
|
% \begin{tabular}{@{}p{0.975\columnwidth}@{}}
|
||||||
\textbf{Physics}
|
% \textbf{Physics}
|
||||||
\\
|
% \\
|
||||||
\toprule
|
% \toprule
|
||||||
\begin{itemize}
|
% \begin{itemize}
|
||||||
\item global orbit space $M / G$
|
% \item global orbit space $M / G$
|
||||||
|
|
||||||
\item $G$ group of isometries
|
% \item $G$ group of isometries
|
||||||
|
|
||||||
\item fixed points
|
% \item fixed points
|
||||||
|
|
||||||
\item additional d.o.f.\ (\emph{twisted states})
|
% \item additional d.o.f.\ (\emph{twisted states})
|
||||||
|
|
||||||
\item singular limits of CY manifolds
|
% \item singular limits of CY manifolds
|
||||||
\end{itemize}
|
% \end{itemize}
|
||||||
\end{tabular}
|
% \end{tabular}
|
||||||
\end{column}
|
% \end{column}
|
||||||
\end{columns}
|
% \end{columns}
|
||||||
|
|
||||||
\pause
|
% \pause
|
||||||
|
|
||||||
\vspace{2em}
|
% \vspace{2em}
|
||||||
\begin{center}
|
% \begin{center}
|
||||||
Use \textbf{time-dependent orbifolds} to model singularities in time
|
% Use \textbf{time-dependent orbifolds} to model singularities in time
|
||||||
\end{center}
|
% \end{center}
|
||||||
|
|
||||||
\begin{tikzpicture}[remember picture, overlay]
|
% \begin{tikzpicture}[remember picture, overlay]
|
||||||
\draw[line width=4pt, red] (5em,3.5em) rectangle (35em, 1em);
|
% \draw[line width=4pt, red] (5em,3.5em) rectangle (35em, 1em);
|
||||||
\end{tikzpicture}
|
% \end{tikzpicture}
|
||||||
\end{frame}
|
% \end{frame}
|
||||||
|
|
||||||
\begin{frame}{Cosmological Singularities}
|
\begin{frame}{Cosmological Singularities}
|
||||||
Use \textbf{time-dependent orbifolds} to model \textbf{space-like singularities}:
|
Use \textbf{time-dependent orbifolds} to model \textbf{space-like singularities}:
|
||||||
@@ -1216,10 +1200,12 @@
|
|||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
\begin{equationblock}{Killing Vector and Null Boost Oribfold}
|
\begin{equationblock}{Killing Vector and Null Boost Orbifold}
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\upkappa = -i \qty( 2 \uppi \Updelta ) J_{+2} = 2 \uppi \partial_z
|
\upkappa = -i \qty( 2 \uppi \Updelta ) J_{+2} = 2 \uppi \partial_z
|
||||||
|
\quad
|
||||||
\Rightarrow
|
\Rightarrow
|
||||||
|
\quad
|
||||||
z \sim z + 2 \uppi n
|
z \sim z + 2 \uppi n
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
\end{equationblock}
|
\end{equationblock}
|
||||||
@@ -1276,7 +1262,7 @@
|
|||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\emph{
|
\emph{
|
||||||
most terms \textbf{do not converge} due to \textbf{isolated zeros} \emph{($l_{(*)} \equiv 0$)} and cannot be recovered even with a \textbf{distributional interpretions} due to the term $\propto u^{-1}$ in the exponentatial
|
most terms \textbf{do not converge} due to \textbf{isolated zeros} \emph{($l_{(*)} \equiv 0$)} and cannot be recovered even with a \textbf{distributional interpretion} due to the term $\propto u^{-1}$ in the exponential
|
||||||
}
|
}
|
||||||
\end{center}
|
\end{center}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
@@ -1284,20 +1270,15 @@
|
|||||||
\begin{frame}{String and Field Theory}
|
\begin{frame}{String and Field Theory}
|
||||||
So far:
|
So far:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item field theory presents \textbf{divergences} (even sQED $\rightarrow$ eikonal?)
|
\item field theory presents \textbf{divergences} (see sQED)
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) \textbf{do not work}
|
\item obvious ways to regularise (Wilson lines, higher derivative couplings, etc.) \textbf{do not work}
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item divergences are \textbf{not (only) gravitational}
|
\item divergences are \textbf{not (only) gravitational}
|
||||||
|
|
||||||
\pause
|
\item \textbf{vanishing volume} in phase space responsible for the divergence
|
||||||
|
|
||||||
\item \textbf{vanishing volume} in phase space of the compact direction is responsible for the divergence
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
\vfill
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
@@ -1356,7 +1337,7 @@
|
|||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
\begin{equationblock}{Distributional Interpretation}
|
\begin{equationblock}{No isolated zeros $\Rightarrow$ distributional Interpretation}
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\widetilde{\upphi}_{\qty{ k_+,\, p,\, l,\, \vec{k},\, r}}\qty( u )
|
\widetilde{\upphi}_{\qty{ k_+,\, p,\, l,\, \vec{k},\, r}}\qty( u )
|
||||||
=
|
=
|
||||||
@@ -1371,36 +1352,28 @@
|
|||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item divergences are present in sQED and \textbf{open string} sector
|
\item divergences are present in sQED and \textbf{open string} sector
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item singularities $\Rightarrow$ \textbf{massive states} are no longer spectators
|
\item singularities $\Rightarrow$ \textbf{massive states} are no longer spectators
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item vanishing volume (\textbf{compact orbifold directions}) $\Rightarrow$ particles ``cannot escape''
|
\item vanishing volume (\textbf{compact orbifold directions}) $\Rightarrow$ particles ``cannot escape''
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item \textbf{non compact} orbifold directions $\Rightarrow$ interpretation of \textbf{amplitudes as distributions}
|
\item \textbf{non compact} orbifold directions $\Rightarrow$ interpretation of \textbf{amplitudes as distributions}
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item issue not restricted to NBO/GNBO but also BO, null brane, etc. (it is a \textbf{general issues} connected to the geometry of the underlying space)
|
\item issue not restricted to NBO/GNBO but also BO, null brane, etc. (it is a \textbf{general issues} connected to the geometry of the underlying space)
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
\vfill
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
\vspace{2em}
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\it
|
\it
|
||||||
divergences are \textbf{hidden into contact terms} and interactions with \textbf{massive states} (the gravitational eikonal deals with massless interactions)
|
divergences are \textbf{hidden into EFT contact terms} and interactions with \textbf{string massive states}: gravity is not the only cause as the same problems are present also in gauge theories.
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\begin{tikzpicture}[remember picture, overlay]
|
\begin{tikzpicture}[remember picture, overlay]
|
||||||
\draw[line width=4pt, red] (0em, 4.5em) rectangle (40em, 1em);
|
\draw[line width=4pt, red] (0em, 4.5em) rectangle (40em, 1em);
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
|
|
||||||
\hfill\cite{Arduino, RF, Pesando (2020)}
|
\hfill\cite{Arduino, \textbf{RF}, Pesando (2020)}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
@@ -1439,9 +1412,9 @@
|
|||||||
\mathds{P}^n\colon
|
\mathds{P}^n\colon
|
||||||
\qquad
|
\qquad
|
||||||
\begin{cases}
|
\begin{cases}
|
||||||
p_a\qty( Z^0,\, \dots,\, Z^n ) & = P_{I_1 \dots I_a} Z^{I_1} \dots Z^{I_a} = 0
|
p_i\qty( Z^0,\, \dots,\, Z^n ) & = P_{a_1 \dots a_i} Z^{a_1} \dots Z^{a_i} = 0
|
||||||
\\
|
\\
|
||||||
p_a\qty( \uplambda Z^0,\, \dots,\, \uplambda Z^n ) & = \uplambda^a p_a\qty( Z^0,\, \dots,\, Z^n )
|
p_i\qty( \uplambda Z^0,\, \dots,\, \uplambda Z^n ) & = \uplambda^i p_i\qty( Z^0,\, \dots,\, Z^n )
|
||||||
\end{cases}
|
\end{cases}
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
\hfill\cite{Green, Hübsch (1987); Hübsch (1992)}
|
\hfill\cite{Green, Hübsch (1987); Hübsch (1992)}
|
||||||
@@ -1489,11 +1462,11 @@
|
|||||||
\begin{block}{Machine Learning Approach}
|
\begin{block}{Machine Learning Approach}
|
||||||
What is $\mathscr{R}$ in \textbf{machine learning} approach?
|
What is $\mathscr{R}$ in \textbf{machine learning} approach?
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\mathscr{R}( M ) \longrightarrow \mathscr{R}_n( M;\, w )
|
\mathscr{R}( M ) \rightarrow \mathscr{R}_n( M;\, w ) \rightarrow \widehat{h}^{p,\,q}
|
||||||
\qquad
|
\qquad
|
||||||
\text{s.t.}
|
\text{s.t.}
|
||||||
\qquad
|
\qquad
|
||||||
\exists n > M > 0 \mid \mathcal{L}\qty(\mathscr{R}( M ),\, \mathscr{R}_n( M;\, w )) < \upepsilon
|
\exists n > M > 0 \quad \mid \quad \mathcal{L}_n\qty(\widehat{h}^{p,\,q},\, h^{p,\,q}) < \upepsilon
|
||||||
\quad
|
\quad
|
||||||
\forall \upepsilon > 0
|
\forall \upepsilon > 0
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
@@ -1502,19 +1475,15 @@
|
|||||||
|
|
||||||
\begin{frame}{Machine Learning}
|
\begin{frame}{Machine Learning}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item exchange \textbf{analytical solution} with \textbf{optimisation problem}
|
\item \textbf{optimisation problem} $\Rightarrow$ \highlight{gradient descent} (or similar)
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
\item use \textbf{various algorithms} and exploit \textbf{large datasets}
|
\item use \textbf{various algorithms} and exploit \textbf{large datasets} (more training)
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
\item learn a \textbf{representation} rather than a \textbf{solution}
|
\item intersection of \textbf{computer science, mathematics and physics}
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item knowledge from \textbf{computer science, mathematics and physics} to solve problems
|
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
@@ -1523,6 +1492,8 @@
|
|||||||
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\includegraphics[width=0.7\linewidth]{img/label-distribution_orig.pdf}
|
\includegraphics[width=0.7\linewidth]{img/label-distribution_orig.pdf}
|
||||||
|
|
||||||
|
\hfill\cite{Green \emph{et al.} (1987)}
|
||||||
\end{center}
|
\end{center}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
@@ -1533,21 +1504,13 @@
|
|||||||
\begin{frame}{Dataset}
|
\begin{frame}{Dataset}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $7890$ CICY manifolds (full dataset)
|
\item $7890$ CICY manifolds (full dataset)
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item \textbf{dataset pruning}: no product spaces, no ``very far'' outliers (reduction of $0.49\%$)
|
\item \textbf{dataset pruning}: no product spaces, no ``very far'' outliers (reduction of $0.49\%$)
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item $h^{1,\, 1} \in \qty[ 1,\, 16 ]$ and $h^{2,\, 1} \in \qty[ 15,\, 86 ]$
|
\item $h^{1,\, 1} \in \qty[ 1,\, 16 ]$ and $h^{2,\, 1} \in \qty[ 15,\, 86 ]$
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item $80\%$ training, $10\%$ validation, $10\%$ test
|
\item $80\%$ training, $10\%$ validation, $10\%$ test
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item choose \textbf{regression}, but evaluate using \textbf{accuracy} (round the result)
|
\item choose \textbf{regression}, but evaluate using \textbf{accuracy} (round the result)
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
@@ -1559,7 +1522,6 @@
|
|||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Exploratory Data Analysis}
|
\begin{frame}{Exploratory Data Analysis}
|
||||||
Machine Learning \highlight{pipeline:}
|
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\textbf{exploratory} data analysis
|
\textbf{exploratory} data analysis
|
||||||
$\rightarrow$
|
$\rightarrow$
|
||||||
@@ -1568,19 +1530,25 @@
|
|||||||
Hodge numbers
|
Hodge numbers
|
||||||
\end{center}
|
\end{center}
|
||||||
|
|
||||||
\hfill\cite{Ruehle (2020); Erbin, RF (2020)}
|
\hfill\cite{Ruehle (2020); Erbin, \textbf{RF} (2020)}
|
||||||
|
\vfill
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
|
|
||||||
\begin{columns}
|
\begin{columns}
|
||||||
\begin{column}{0.5\linewidth}
|
\begin{column}{0.33\linewidth}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.9\columnwidth]{img/corr-matrix_orig.pdf}
|
\includegraphics[width=\columnwidth]{img/corr-matrix_orig.pdf}
|
||||||
\end{column}
|
\end{column}
|
||||||
\hfill
|
\hfill
|
||||||
\begin{column}{0.5\linewidth}
|
\begin{column}{0.33\linewidth}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.9\columnwidth, trim={0 0 6in 0}, clip]{img/scalar-features_orig.pdf}
|
\includegraphics[width=\columnwidth, trim={0 0 6in 0}, clip]{img/scalar-features_orig.pdf}
|
||||||
|
\end{column}
|
||||||
|
\hfill
|
||||||
|
\begin{column}{0.33\linewidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\columnwidth, trim={0 0.5in 6in 0}, clip]{img/vector-tensor-features_orig.pdf}
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
@@ -1590,7 +1558,7 @@
|
|||||||
\includegraphics[width=0.85\linewidth]{img/ml_map.png}
|
\includegraphics[width=0.85\linewidth]{img/ml_map.png}
|
||||||
|
|
||||||
\begin{tikzpicture}[remember picture, overlay]
|
\begin{tikzpicture}[remember picture, overlay]
|
||||||
\node[anchor=base] at (16em,18em) {\cite{from scikit-learn.org}};
|
\node[anchor=base] at (16em,18em) {\cite{from \href{https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html}{scikit-learn.org}}};
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
@@ -1612,13 +1580,13 @@
|
|||||||
\begin{column}{0.4\linewidth}
|
\begin{column}{0.4\linewidth}
|
||||||
What is PCA for a $X \in \mathds{R}^{n \times p}$?
|
What is PCA for a $X \in \mathds{R}^{n \times p}$?
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item project data onto a \textbf{lower dimensional} space where variance is maximised
|
\item project data such that \textbf{variance is maximised}
|
||||||
|
|
||||||
\item equivalently compute the \textbf{eigenvectors} of $X X^T$ or the \textbf{singular values} of $X$
|
\item \textbf{eigenvectors} of $X X^T$ or the \textbf{singular values} of $X$
|
||||||
|
|
||||||
\item isolate \textbf{the signal} from the \textbf{background}
|
\item isolate \textbf{signal} from \textbf{background}
|
||||||
|
|
||||||
\item ease the machine learning job of finding a better representation of the input
|
\item ease the ML job of finding a better representation of the input
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{column}
|
\end{column}
|
||||||
\hfill
|
\hfill
|
||||||
@@ -1642,7 +1610,7 @@
|
|||||||
\begin{column}{0.5\linewidth}
|
\begin{column}{0.5\linewidth}
|
||||||
\centering
|
\centering
|
||||||
\textbf{Best Training Set}
|
\textbf{Best Training Set}
|
||||||
\cite{Erbin, RF (2020)}
|
\cite{Erbin, \textbf{RF} (2020)}
|
||||||
\includegraphics[width=0.75\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_best_plots.pdf}
|
\includegraphics[width=0.75\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_best_plots.pdf}
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
@@ -1666,13 +1634,13 @@
|
|||||||
\begin{block}{Layers}
|
\begin{block}{Layers}
|
||||||
\vspace{0.5em}
|
\vspace{0.5em}
|
||||||
\begin{tabular}{@{}ll@{}}
|
\begin{tabular}{@{}ll@{}}
|
||||||
\textbf{fully connected}:
|
fully connected:
|
||||||
&
|
&
|
||||||
$\upphi\qty( a^{\qty(i)\, \qty{l}} \cdot W^{\qty{l}} + b^{\qty{l}} \mathds{1}_l )$
|
$\upphi\qty( a^{\qty(i)\, \qty{l}} \cdot W^{\qty{l}} + b^{\qty{l}} \mathds{1} )$
|
||||||
\\
|
\\
|
||||||
\textbf{convolutional}:
|
convolutional:
|
||||||
&
|
&
|
||||||
$\upphi\qty( a^{\qty(i)\, \qty{l}}\, *\, W^{\qty{l}} + b^{\qty{l}} \mathds{1}_l )$
|
$\upphi\qty( a^{\qty(i)\, \qty{l}}\, *\, W^{\qty{l}} + b^{\qty{l}} \mathds{1} )$
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\end{block}
|
\end{block}
|
||||||
|
|
||||||
@@ -1694,14 +1662,14 @@
|
|||||||
Why convolutional?
|
Why convolutional?
|
||||||
\begin{columns}
|
\begin{columns}
|
||||||
\begin{column}{0.4\linewidth}
|
\begin{column}{0.4\linewidth}
|
||||||
\begin{itemize}[<+->]
|
\begin{itemize}
|
||||||
\item retain \textbf{spacial awareness}
|
\item retain \textbf{spacial awareness}
|
||||||
|
|
||||||
\item smaller \textbf{no.\ of parameters} ($\approx 2 \times 10^5$ vs.\ $\approx 2 \times 10^6$)
|
\item smaller \textbf{no.\ of parameters} ($\approx 2 \times 10^5$ vs.\ $\approx 2 \times 10^6$)
|
||||||
|
|
||||||
\item weights are \textbf{shared}
|
\item weights are \textbf{shared}
|
||||||
|
|
||||||
\item CNN can isolate \textbf{``defining features''}
|
\item CNNs isolate \textbf{``defining features''}
|
||||||
|
|
||||||
\item find patterns as in \textbf{computer vision}
|
\item find patterns as in \textbf{computer vision}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
@@ -1709,21 +1677,21 @@
|
|||||||
\hfill
|
\hfill
|
||||||
\begin{column}{0.6\linewidth}
|
\begin{column}{0.6\linewidth}
|
||||||
\centering
|
\centering
|
||||||
\only<1-3>{\includegraphics[width=0.75\columnwidth, trim={12in 5in 0 5in}, clip]{img/input_mat.png}}
|
\only<1>{\includegraphics[width=0.75\columnwidth, trim={12in 5in 0 5in}, clip]{img/input_mat.png}}
|
||||||
\only<4>{\animategraphics[autoplay,loop,controls={play,stop},width=\linewidth]{8}{img/animation/sequence/conv-}{0}{79}}
|
\only<2>{\animategraphics[autoplay,loop,controls={play,stop},width=\linewidth]{8}{img/animation/sequence/conv-}{0}{79}}
|
||||||
\only<5>{\resizebox{\columnwidth}{!}{\import{img}{ccnn.pgf}}}
|
\only<3>{\resizebox{\columnwidth}{!}{\import{img}{ccnn.pgf}}}
|
||||||
\end{column}
|
\end{column}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Inception Neural Networks}
|
\begin{frame}{Inception Neural Networks}
|
||||||
Recent development by Google's deep learning teams led to:
|
Recent development by deep learning research at \highlight{Google} led to:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item neural networks with \textbf{better generalisation properties}
|
\item neural networks with better \textbf{generalisation properties}
|
||||||
|
|
||||||
\item smaller networks (both parameters and depth)
|
\item \textbf{smaller} networks (both parameters and depth)
|
||||||
|
|
||||||
\item different \textbf{concurrent kernels} (e.g.\ one over \textbf{equations} one over \textbf{coordinates})
|
\item different \textbf{concurrent kernels}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\pause
|
\pause
|
||||||
@@ -1738,64 +1706,50 @@
|
|||||||
\begin{column}{0.5\linewidth}
|
\begin{column}{0.5\linewidth}
|
||||||
\centering
|
\centering
|
||||||
\textbf{Best Training Set}
|
\textbf{Best Training Set}
|
||||||
\cite{Erbin, RF (2020)}
|
\cite{Erbin, \textbf{RF} (2020)}
|
||||||
\only<1>{\includegraphics[width=0.8\columnwidth, trim={0 0 1.65in 0}, clip]{img/cicy_best_plots.pdf}}
|
\only<1>{\includegraphics[width=0.8\columnwidth, trim={0 0 1.65in 0}, clip]{img/cicy_best_plots.pdf}}
|
||||||
\only<2->{\includegraphics[width=\columnwidth]{img/cicy_best_plots.pdf}}
|
\only<2->{\includegraphics[width=\columnwidth]{img/cicy_best_plots.pdf}}
|
||||||
\end{column}
|
\end{column}
|
||||||
\hfill
|
\hfill
|
||||||
\begin{column}{0.5\linewidth}
|
\visible<2->{
|
||||||
\centering
|
\begin{column}{0.5\linewidth}
|
||||||
\includegraphics[width=0.75\columnwidth]{img/inc_nn_learning_curve_h11.pdf}
|
\centering
|
||||||
\includegraphics[width=0.75\columnwidth]{img/inc_nn_learning_curve.pdf}
|
\includegraphics[width=0.75\columnwidth]{img/inc_nn_learning_curve_h11.pdf}
|
||||||
\end{column}
|
\includegraphics[width=0.75\columnwidth]{img/inc_nn_learning_curve.pdf}
|
||||||
|
\end{column}
|
||||||
|
}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{A Few Comments and Future Directions}
|
\begin{frame}{A Few Comments and Future Directions}
|
||||||
Why \highlight{deep learning in physics?}
|
\begin{tabular}{@{}l@{}}
|
||||||
\begin{itemize}
|
Why \highlight{deep learning in physics?}
|
||||||
\item reliable \textbf{predictive method} \pause (provided good data analysis)
|
\\
|
||||||
|
\toprule
|
||||||
\pause
|
$\circ$ reliable \textbf{predictive method} \pause (provided good data analysis)
|
||||||
|
\\
|
||||||
\item reliable \textbf{source of inspiration} \pause (provided good data analysis)
|
$\circ$ reliable \textbf{source of inspiration} \pause (provided good data analysis)
|
||||||
|
\\
|
||||||
\pause
|
$\circ$ reliable \textbf{generalisation method} \pause (provided good data analysis)
|
||||||
|
\\
|
||||||
\item reliable \textbf{generalisation method} \pause (provided good data analysis)
|
$\circ$ \textbf{CNNs are powerful tools} (this is the \emph{first time in physics!})
|
||||||
|
\\
|
||||||
\pause
|
$\circ$ interdisciplinary approach $=$ win-win situation!
|
||||||
|
\\[1em]
|
||||||
\item \textbf{CNNs are powerful tools} (this is the \emph{first time in physics!})
|
\pause
|
||||||
|
What now?
|
||||||
\pause
|
\\
|
||||||
|
\toprule
|
||||||
\item interdisciplinary approach $=$ win-win situation!
|
$\circ$ representation learning $\Rightarrow$ what is the best way to represent CICYs?
|
||||||
\end{itemize}
|
\\
|
||||||
|
$\circ$ study invariances $\Rightarrow$ invariances should not influence the result (graph representations?)
|
||||||
\pause
|
\\
|
||||||
|
$\circ$ higher dimensions $\Rightarrow$ what about CICY 4-folds?
|
||||||
What now?
|
\\
|
||||||
|
$\circ$ geometric deep learning $\Rightarrow$ explain the geometry of the ``AI'' behind deep learning!
|
||||||
\begin{itemize}
|
\\
|
||||||
\item representation learning $\Rightarrow$ what is the best way to represent CICYs?
|
$\circ$ reinforcement learning $\Rightarrow$ give the rules, not the result!
|
||||||
|
\end{tabular}
|
||||||
\pause
|
|
||||||
|
|
||||||
\item study invariances $\Rightarrow$ invariances should not influence the result (graph representations?)
|
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item higher dimensions $\Rightarrow$ what about CICY 4-folds?
|
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item geometric deep learning $\Rightarrow$ explain the geometry of the ``AI'' behind deep learning!
|
|
||||||
|
|
||||||
\pause
|
|
||||||
|
|
||||||
\item reinforcement learning $\Rightarrow$ give the rules, not the result!
|
|
||||||
\end{itemize}
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
{%
|
{%
|
||||||
@@ -1806,6 +1760,24 @@
|
|||||||
}
|
}
|
||||||
\addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
|
\addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
|
||||||
\begin{frame}[noframenumbering]{The End?}
|
\begin{frame}[noframenumbering]{The End?}
|
||||||
|
\begin{columns}[T, totalwidth=\linewidth]
|
||||||
|
\begin{column}{0.7\linewidth}
|
||||||
|
\begin{itemize}
|
||||||
|
\item general framework for \textbf{D-branes at angles}
|
||||||
|
|
||||||
|
\item alternative computations of \textbf{correlators of spin fields}
|
||||||
|
|
||||||
|
\item strings and divergences in \textbf{time dependent orbifolds}
|
||||||
|
|
||||||
|
\item string compactifications and \textbf{deep learning techniques}
|
||||||
|
\end{itemize}
|
||||||
|
\end{column}
|
||||||
|
\begin{column}{0.3\linewidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.5\columnwidth]{\firstlogo}
|
||||||
|
\end{column}
|
||||||
|
\end{columns}
|
||||||
|
\vfill
|
||||||
\begin{center}
|
\begin{center}
|
||||||
\Huge
|
\Huge
|
||||||
THANK YOU
|
THANK YOU
|
||||||
|
|||||||
Reference in New Issue
Block a user