Add fade animation and content up to d-branes

Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
2020-11-04 13:31:03 +01:00
parent d563c8b47d
commit 814675e1e4
3 changed files with 198 additions and 9 deletions

23
img/chanpaton.pgf Normal file
View File

@@ -0,0 +1,23 @@
\begin{tikzpicture}
% draw the D-branes
\draw[thick] (0cm, 0cm) -- (1cm, 0.5cm) -- (1cm, 4cm) -- (0cm, 3.5cm) -- cycle;
\draw[thick] (2.5cm, 0cm) -- (3.5cm, 0.5cm) -- (3.5cm, 4cm) -- (2.5cm, 3.5cm) -- cycle;
\draw[thick] (5cm, 0cm) -- (6cm, 0.5cm) -- (6cm, 4cm) -- (5cm, 3.5cm) -- cycle;
% draw strings
\draw[decorate, decoration={snake, segment length=1cm}, dash pattern=on 2.45cm off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt, postaction={decoration={markings, mark=at position 0.5 with {\arrow{>}}}, decorate}] (0.5cm, 3cm) -- (3cm, 1.5cm);
\node[anchor=base] (l1) at (1.75cm, 2.75cm) {$\tensor{\lambda}{^1_1_2}$};
\draw[decorate, decoration={snake, segment length=1cm}, dash pattern=on 2.45cm off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt, postaction={decoration={markings, mark=at position 0.5 with {\arrow{>}}}, decorate}] (3cm, 3cm) -- (5.5cm, 1.5cm);
\node[anchor=base] (l2) at (4.25cm, 2.75cm) {$\tensor{\lambda}{^2_2_3}$};
\draw[decorate, decoration={snake, segment length=1cm}, postaction={decoration={markings, mark=at position 0.765 with {\arrow{>}}}, decorate}] (3cm, 2.5cm) .. controls (3.5cm, 2cm) and (3.5cm, 1cm) .. (3cm, 0.5cm);
\node[anchor=base] (l3) at (4cm, 1.5cm) {$\tensor{\lambda}{^3_2_2}$};
\draw[decorate, decoration={snake, segment length=1cm}, dash pattern=on 5.15cm off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt on 1pt off 1pt, postaction={decoration={markings, mark=at position 0.5 with {\arrow{<}}}, decorate}] (0.5cm, 1cm) .. controls (1.5cm, 0cm) and (4cm, 0cm) .. (5.5cm, 1cm);
\node[anchor=base] (l4) at (3cm, -0.5cm) {$\tensor{\lambda}{^4_3_1}$};
\end{tikzpicture}
% vim: ft=tex

BIN
img/cy.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 248 KiB

View File

@@ -26,6 +26,7 @@
\usecolortheme{crane} \usecolortheme{crane}
\usefonttheme{structurebold} \usefonttheme{structurebold}
\setbeamertemplate{navigation symbols}{} \setbeamertemplate{navigation symbols}{}
\addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
\author[Finotello]{Riccardo Finotello} \author[Finotello]{Riccardo Finotello}
\title[D-branes and Deep Learning]{D-branes and Deep Learning} \title[D-branes and Deep Learning]{D-branes and Deep Learning}
@@ -41,6 +42,10 @@
} }
\date{15th December 2020} \date{15th December 2020}
\usetikzlibrary{decorations.markings}
\usetikzlibrary{decorations.pathmorphing}
\usetikzlibrary{arrows}
\newenvironment{equationblock}[1]{% \newenvironment{equationblock}[1]{%
\begin{block}{#1} \begin{block}{#1}
\vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0pt} \vspace*{-\baselineskip}\setlength\belowdisplayshortskip{0pt}
@@ -48,6 +53,8 @@
\end{block} \end{block}
} }
\newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}}
\newcommand{\firstlogo}{img/unito} \newcommand{\firstlogo}{img/unito}
\newcommand{\thefirstlogo}{% \newcommand{\thefirstlogo}{%
\begin{figure} \begin{figure}
@@ -138,6 +145,7 @@
\transparent{0.1} \transparent{0.1}
\includegraphics[width=\paperwidth]{img/torino.png} \includegraphics[width=\paperwidth]{img/torino.png}
} }
\addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
\begin{frame}[noframenumbering, plain] \begin{frame}[noframenumbering, plain]
\titlepage{} \titlepage{}
\end{frame} \end{frame}
@@ -145,6 +153,11 @@
{% {%
\setbeamertemplate{footline}{} \setbeamertemplate{footline}{}
\usebackgroundtemplate{%
\transparent{0.1}
\includegraphics[width=\paperwidth]{img/torino.png}
}
\addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{}
\begin{frame}[noframenumbering]{\contentsname} \begin{frame}[noframenumbering]{\contentsname}
\tableofcontents{} \tableofcontents{}
\end{frame} \end{frame}
@@ -180,9 +193,11 @@
\end{equation*} \end{equation*}
\end{equationblock} \end{equationblock}
\pause
\begin{columns} \begin{columns}
\begin{column}[t]{0.5\linewidth} \begin{column}[t]{0.5\linewidth}
\fcolorbox{yellow}{yellow!20}{Symmetries:} \highlight{Symmetries:}
\begin{itemize} \begin{itemize}
\item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$ \item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$
@@ -192,8 +207,10 @@
\end{itemize} \end{itemize}
\end{column} \end{column}
\pause
\begin{column}[t]{0.5\linewidth} \begin{column}[t]{0.5\linewidth}
\fcolorbox{yellow}{yellow!20}{Conformal symmetry:} \highlight{Conformal symmetry:}
\begin{itemize} \begin{itemize}
\item \textbf{vanishing} stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$ \item \textbf{vanishing} stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$
@@ -209,7 +226,7 @@
\begin{frame}{Action Principle and Conformal Symmetry} \begin{frame}{Action Principle and Conformal Symmetry}
\begin{columns} \begin{columns}
\begin{column}{0.6\linewidth} \begin{column}{0.6\linewidth}
\fcolorbox{yellow}{yellow!20}{% \highlight{%
Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$: Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$:
} }
\begin{equation*} \begin{equation*}
@@ -229,9 +246,9 @@
\begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$} \begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$}
\begin{eqnarray*} \begin{eqnarray*}
\qty[ L_n,\, L_m ] \qty[ \overset{\scriptscriptstyle(-)}{L}_n,\, \overset{\scriptscriptstyle(-)}{L}_m ]
& = & & = &
(n - m) L_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0} (n - m) \overset{\scriptscriptstyle(-)}{L}_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0}
\\ \\
\qty[ L_n,\, \overline{L}_m ] \qty[ L_n,\, \overline{L}_m ]
& = & & = &
@@ -243,14 +260,14 @@
\begin{column}{0.4\linewidth} \begin{column}{0.4\linewidth}
\begin{figure}[h] \begin{figure}[h]
\centering \centering
\resizebox{0.8\columnwidth}{!}{\import{img}{complex_plane.pgf}} \resizebox{0.9\columnwidth}{!}{\import{img}{complex_plane.pgf}}
\end{figure} \end{figure}
\end{column} \end{column}
\end{columns} \end{columns}
\end{frame} \end{frame}
\begin{frame}{Action Principle and Conformal Symmetry} \begin{frame}{Action Principle and Conformal Symmetry}
\fcolorbox{yellow}{yellow!20}{Superstrings in $D$ dimensions:} \highlight{Superstrings in $D$ dimensions:}
\begin{equation*} \begin{equation*}
\mathcal{T}( z ) \mathcal{T}( z )
= =
@@ -264,6 +281,8 @@
c = \frac{3}{2} D c = \frac{3}{2} D
\end{equation*} \end{equation*}
\pause
\begin{block}{$\qty( \uplambda, 0 )~/~\qty( 1 - \uplambda, 0 )$ Ghost System} \begin{block}{$\qty( \uplambda, 0 )~/~\qty( 1 - \uplambda, 0 )$ Ghost System}
Introduce anti-commuting $\qty( b,\, c )$ and commuting $\qty( \upbeta,\, \upgamma )$ conformal fields: Introduce anti-commuting $\qty( b,\, c )$ and commuting $\qty( \upbeta,\, \upgamma )$ conformal fields:
\begin{equation*} \begin{equation*}
@@ -277,10 +296,12 @@
\upbeta( z )\, \overline{\partial} \upgamma( z ) \upbeta( z )\, \overline{\partial} \upgamma( z )
) )
\end{equation*} \end{equation*}
where $\uplambda_b = 2$ and $\uplambda_{\upbeta} = \frac{3}{2}$. where $\uplambda_b = 2$ and $\uplambda_c = -1$, and $\uplambda_{\upbeta} = \frac{3}{2}$ and $\uplambda_{\upgamma} = -\frac{1}{2}$.
\end{block} \end{block}
\fcolorbox{yellow}{yellow!20}{Consequence:} \pause
\highlight{Consequence:}
\begin{equation*} \begin{equation*}
c_{\text{full}} = c + c_{\text{ghost}} = 0 c_{\text{full}} = c + c_{\text{ghost}} = 0
\quad \quad
@@ -292,8 +313,153 @@
\begin{frame}{Extra Dimensions and Compactification} \begin{frame}{Extra Dimensions and Compactification}
\begin{block}{Compactification}
\begin{columns}
\begin{column}{0.6\linewidth}
\begin{equation*}
\mathscr{M}^{1,\, 9}
=
\mathscr{M}^{1,\, 3} \otimes \mathscr{X}_6
\end{equation*}
\begin{itemize}
\item $\mathscr{X}_6$ is a \textbf{compact} manifold
\item $N = 1$ \textbf{supersymmetry} is preserved in 4D
\item algebra of $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ contained in arising \textbf{gauge group}
\end{itemize}
\end{column}
\begin{column}{0.4\linewidth}
\centering
\includegraphics[width=0.7\columnwidth]{img/cy}
\end{column}
\end{columns}
\end{block}
\pause
\begin{columns}
\begin{column}[t]{0.5\linewidth}
\highlight{Kähler manifolds} $\qty( M,\, g )$ such that
\begin{itemize}
\item $\dim\limits_{\mathds{C}} M = m$
\item $\mathrm{Hol}( g ) \subseteq \mathrm{SU}( m )$
\item $g$ is Ricci-flat (equiv.\ $c_1\qty( M )$ vanishes)
\end{itemize}
\end{column}
\pause
\begin{column}[t]{0.5\linewidth}
Characterised by \highlight{Hodge numbers}
\begin{equation*}
h^{r,\,s} = \dim\limits_{\mathds{C}} H_{\overline{\partial}}^{r,\,s}\qty( M,\, \mathds{C} )
\end{equation*}
counting the no.\ of harmonic $(r,\,s)$-forms.
\end{column}
\end{columns}
\end{frame} \end{frame}
\begin{frame}{D-branes and Open Strings}
Polyakov's action naturally introduces \highlight{Neumann b.c.:}
\begin{equation*}
\eval{\partial_{\upsigma} X\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
\end{equation*}
satisfied by \textbf{open and closed} strings living in $D$ dimensions s.t.\ $\square X = 0$.
\pause
\begin{block}{T-duality}
\begin{equation*}
X( z, \overline{z} )
=
X( z ) + \overline{X}( \overline{z} )
\quad
\stackrel{T}{\Rightarrow}
\quad
X( z ) - \overline{X}( \overline{z} )
=
Y( z, \overline{z} )
=
Y( z ) + \overline{Y}( \overline{z} )
\end{equation*}
\end{block}
\pause
Resulting effect (repeated $p \le D - 1$ times) leads to \highlight{Dirichlet b.c.:}
\begin{equation*}
\eval{\partial_{\upsigma} X^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
\quad
\stackrel{T}{\Rightarrow}
\quad
\eval{\partial_{\uptau} Y^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0
\quad
\forall i = 1, 2,\, \dots,\, p
\end{equation*}
thus \textbf{open strings} can be \textbf{constrained} to \highlight{$D(D - p - 1)$-branes.}
\end{frame}
\begin{frame}{D-branes and Open Strings}
Introducing $Dp$-branes breaks \highlight{$\mathrm{ISO}(1,\, D-1) \rightarrow \mathrm{ISO}( 1, p ) \otimes \mathrm{SO}( D - 1 - p )$.}
\pause
\begin{block}{Spectrum}
At massless level (\emph{irrep} of \textbf{little group} $\mathrm{SO}( D - 2 )$):
\begin{equation*}
\mathcal{A}^{\upmu}
\quad \leftrightarrow \quad
\alpha_{-1}^{\upmu} \ket{0}
\qquad
\longrightarrow
\qquad
\begin{tabular}{@{}llll@{}}
$\mathcal{A}^A$
&
$\leftrightarrow$
&
$\alpha_{-1}^A \ket{0},$
&
$A = 0,\, 1,\, \dots,\, p$
\\
$\mathcal{A}^a$
&
$\leftrightarrow$
&
$\alpha_{-1}^a \ket{0},$
&
$a = 1,\, 2,\, \dots,\, D - p - 1$
\end{tabular}
\end{equation*}
\end{block}
\pause
\begin{columns}
\begin{column}{0.5\linewidth}
\centering
\resizebox{0.55\columnwidth}{!}{\import{img}{chanpaton.pgf}}
\end{column}
\begin{column}{0.5\linewidth}
Introducing \textbf{Chan--Paton factors} $\tensor{\uplambda}{^r_{ij}}$, when branes are \textbf{coincident}:
\begin{equation*}
\bigoplus\limits_{r = 1}^N \mathrm{U}_r(1)
\quad
\longrightarrow
\quad
\mathrm{U}( N )
\end{equation*}
\pause
\highlight{Build gauge bosons, fermions and scalars.}
\end{column}
\end{columns}
\end{frame}
\section[Time Divergences]{Cosmological Backgrounds and Divergences} \section[Time Divergences]{Cosmological Backgrounds and Divergences}