Add branes in conformal plane

Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
2020-11-06 19:40:16 +01:00
parent b3c49df7cc
commit 6dc21a9be2
2 changed files with 97 additions and 4 deletions

21
img/threebranes_plane.pgf Normal file
View File

@@ -0,0 +1,21 @@
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{decorations.pathmorphing}
\begin{tikzpicture}
% draw axis
\draw[thick, ->] (-0.5cm, 0cm) -- (5cm, 0cm) node[anchor=south] {$\Re \omega$};
\draw[thick, ->] (0cm, -1cm) -- (0cm, 3cm) node[anchor=east] {$\Im \omega$};
% draw branching cuts
\filldraw[fill=black!30, draw=black, dashed] (0cm, 2pt) rectangle (4.8cm, -2pt);
\filldraw[fill=black!10, draw=black, dashed] (1cm, 1pt) rectangle (4.8cm, -1pt);
% draw branching points
\filldraw[fill=white, draw=black] (4.8cm, 0cm) circle (2pt) node[anchor=north] (x1) {$\infty$};
\filldraw[fill=white, draw=black] (1cm, 0cm) circle (2pt) node[anchor=north] (x2) {$1$};
\filldraw[fill=white, draw=black] (0cm, 0cm) circle (2pt) node[anchor=north east] (x3) {$0$};
\end{tikzpicture}
% vim: ft=tex

View File

@@ -521,7 +521,7 @@
\pause
\begin{columns}
\begin{column}{0.5\linewidth}
\begin{column}{0.4\linewidth}
\centering
\resizebox{0.9\columnwidth}{!}{\import{img}{welladapted.pgf}}
\end{column}
@@ -531,9 +531,10 @@
\qty( X_{(t)} )^I
=
\tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I
\quad
\text{s.t.}
\quad
\end{equation*}
\pause
where
\begin{equation*}
R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )}
\end{equation*}
\pause
@@ -598,6 +599,77 @@
\end{equationblock}
\end{frame}
\begin{frame}{Doubling Trick and Spinor Representation}
\begin{block}{Doubling Trick}
\begin{equation*}
\partial_z \mathcal{X}( z )
=
\begin{cases}
\partial_u X( u )
& \text{if}~z \in \mathscr{H}_{>}^{(\overline{t})}
\\
U_{(\overline{t})}\, \partial_{\overline{u}} \overline{X}( \overline{u} )
& \text{if}~z \in \mathscr{H}_{<}^{(\overline{t})}
\end{cases}
\quad
\Rightarrow
\quad
\mqty{%
\partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_+ )
=
\mathcal{U}_{(t,\, t+1)}\,
\partial_{z} \mathcal{X}( x_{(t)} + \updelta_+ ),
\\
\partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_- )
=
\widetilde{\mathcal{U}}_{(t,\, t+1)}\,
\partial_{z} \mathcal{X}( x_{(t)} + \updelta_- ),
}
\end{equation*}
where $\mathscr{H}_{\gtrless}^{(t)} = \qty{z \in \mathds{C} \mid \Im z \gtrless 0~\text{or}~z \in D_{(t)} }$ and $\updelta_{\pm} = \upeta \pm i 0^+$.
\end{block}
\pause
\begin{tikzpicture}[remember picture, overlay]
\draw[line width=4pt, red] (31em,6em) ellipse (0.8cm and 1.2cm);
\end{tikzpicture}
\pause
Use \highlight{Pauli matrices} $\uptau = \qty( i\, \mathds{1}_2, \vec{\upsigma} )$:
\begin{equation*}
\partial_z \mathcal{X}_{(s)}( z )
=
\partial_z \mathcal{X}^I( z )\, \uptau_I
\quad
\Rightarrow
\quad
\partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i}\, \updelta_{\pm} )
=
\overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)}\,
\partial_{z} \mathcal{X}( x_{(t)} + \updelta_{\pm} )\,
\overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)}\,
\end{equation*}
where
\begin{equation*}
\overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)} \in \mathrm{SU}(2)_L
\quad
\text{and}
\quad
\overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)} \in \mathrm{SU}(2)_R
\end{equation*}
\end{frame}
\begin{frame}{Hypergeometric Basis}
\begin{columns}
\begin{column}{0.5\linewidth}
\centering
\resizebox{0.8\columnwidth}
\end{column}
\end{columns}
\end{frame}
\section[Time Divergences]{Cosmological Backgrounds and Divergences}
\begin{frame}{BBB}