Add branes in conformal plane
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
21
img/threebranes_plane.pgf
Normal file
21
img/threebranes_plane.pgf
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
\usetikzlibrary{decorations.pathreplacing}
|
||||||
|
\usetikzlibrary{decorations.pathmorphing}
|
||||||
|
|
||||||
|
\begin{tikzpicture}
|
||||||
|
|
||||||
|
% draw axis
|
||||||
|
\draw[thick, ->] (-0.5cm, 0cm) -- (5cm, 0cm) node[anchor=south] {$\Re \omega$};
|
||||||
|
\draw[thick, ->] (0cm, -1cm) -- (0cm, 3cm) node[anchor=east] {$\Im \omega$};
|
||||||
|
|
||||||
|
% draw branching cuts
|
||||||
|
\filldraw[fill=black!30, draw=black, dashed] (0cm, 2pt) rectangle (4.8cm, -2pt);
|
||||||
|
\filldraw[fill=black!10, draw=black, dashed] (1cm, 1pt) rectangle (4.8cm, -1pt);
|
||||||
|
|
||||||
|
% draw branching points
|
||||||
|
\filldraw[fill=white, draw=black] (4.8cm, 0cm) circle (2pt) node[anchor=north] (x1) {$\infty$};
|
||||||
|
\filldraw[fill=white, draw=black] (1cm, 0cm) circle (2pt) node[anchor=north] (x2) {$1$};
|
||||||
|
\filldraw[fill=white, draw=black] (0cm, 0cm) circle (2pt) node[anchor=north east] (x3) {$0$};
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
|
||||||
|
% vim: ft=tex
|
||||||
80
thesis.tex
80
thesis.tex
@@ -521,7 +521,7 @@
|
|||||||
\pause
|
\pause
|
||||||
|
|
||||||
\begin{columns}
|
\begin{columns}
|
||||||
\begin{column}{0.5\linewidth}
|
\begin{column}{0.4\linewidth}
|
||||||
\centering
|
\centering
|
||||||
\resizebox{0.9\columnwidth}{!}{\import{img}{welladapted.pgf}}
|
\resizebox{0.9\columnwidth}{!}{\import{img}{welladapted.pgf}}
|
||||||
\end{column}
|
\end{column}
|
||||||
@@ -531,9 +531,10 @@
|
|||||||
\qty( X_{(t)} )^I
|
\qty( X_{(t)} )^I
|
||||||
=
|
=
|
||||||
\tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I
|
\tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I
|
||||||
\quad
|
\end{equation*}
|
||||||
\text{s.t.}
|
\pause
|
||||||
\quad
|
where
|
||||||
|
\begin{equation*}
|
||||||
R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )}
|
R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )}
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
\pause
|
\pause
|
||||||
@@ -598,6 +599,77 @@
|
|||||||
\end{equationblock}
|
\end{equationblock}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Doubling Trick and Spinor Representation}
|
||||||
|
\begin{block}{Doubling Trick}
|
||||||
|
\begin{equation*}
|
||||||
|
\partial_z \mathcal{X}( z )
|
||||||
|
=
|
||||||
|
\begin{cases}
|
||||||
|
\partial_u X( u )
|
||||||
|
& \text{if}~z \in \mathscr{H}_{>}^{(\overline{t})}
|
||||||
|
\\
|
||||||
|
U_{(\overline{t})}\, \partial_{\overline{u}} \overline{X}( \overline{u} )
|
||||||
|
& \text{if}~z \in \mathscr{H}_{<}^{(\overline{t})}
|
||||||
|
\end{cases}
|
||||||
|
\quad
|
||||||
|
\Rightarrow
|
||||||
|
\quad
|
||||||
|
\mqty{%
|
||||||
|
\partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_+ )
|
||||||
|
=
|
||||||
|
\mathcal{U}_{(t,\, t+1)}\,
|
||||||
|
\partial_{z} \mathcal{X}( x_{(t)} + \updelta_+ ),
|
||||||
|
\\
|
||||||
|
\partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_- )
|
||||||
|
=
|
||||||
|
\widetilde{\mathcal{U}}_{(t,\, t+1)}\,
|
||||||
|
\partial_{z} \mathcal{X}( x_{(t)} + \updelta_- ),
|
||||||
|
}
|
||||||
|
\end{equation*}
|
||||||
|
where $\mathscr{H}_{\gtrless}^{(t)} = \qty{z \in \mathds{C} \mid \Im z \gtrless 0~\text{or}~z \in D_{(t)} }$ and $\updelta_{\pm} = \upeta \pm i 0^+$.
|
||||||
|
\end{block}
|
||||||
|
|
||||||
|
\pause
|
||||||
|
|
||||||
|
\begin{tikzpicture}[remember picture, overlay]
|
||||||
|
\draw[line width=4pt, red] (31em,6em) ellipse (0.8cm and 1.2cm);
|
||||||
|
\end{tikzpicture}
|
||||||
|
|
||||||
|
\pause
|
||||||
|
|
||||||
|
Use \highlight{Pauli matrices} $\uptau = \qty( i\, \mathds{1}_2, \vec{\upsigma} )$:
|
||||||
|
\begin{equation*}
|
||||||
|
\partial_z \mathcal{X}_{(s)}( z )
|
||||||
|
=
|
||||||
|
\partial_z \mathcal{X}^I( z )\, \uptau_I
|
||||||
|
\quad
|
||||||
|
\Rightarrow
|
||||||
|
\quad
|
||||||
|
\partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i}\, \updelta_{\pm} )
|
||||||
|
=
|
||||||
|
\overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)}\,
|
||||||
|
\partial_{z} \mathcal{X}( x_{(t)} + \updelta_{\pm} )\,
|
||||||
|
\overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)}\,
|
||||||
|
\end{equation*}
|
||||||
|
where
|
||||||
|
\begin{equation*}
|
||||||
|
\overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)} \in \mathrm{SU}(2)_L
|
||||||
|
\quad
|
||||||
|
\text{and}
|
||||||
|
\quad
|
||||||
|
\overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)} \in \mathrm{SU}(2)_R
|
||||||
|
\end{equation*}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
\begin{frame}{Hypergeometric Basis}
|
||||||
|
\begin{columns}
|
||||||
|
\begin{column}{0.5\linewidth}
|
||||||
|
\centering
|
||||||
|
\resizebox{0.8\columnwidth}
|
||||||
|
\end{column}
|
||||||
|
\end{columns}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
\section[Time Divergences]{Cosmological Backgrounds and Divergences}
|
\section[Time Divergences]{Cosmological Backgrounds and Divergences}
|
||||||
|
|
||||||
\begin{frame}{BBB}
|
\begin{frame}{BBB}
|
||||||
|
|||||||
Reference in New Issue
Block a user