Add branes in conformal plane
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										21
									
								
								img/threebranes_plane.pgf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										21
									
								
								img/threebranes_plane.pgf
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,21 @@ | |||||||
|  | \usetikzlibrary{decorations.pathreplacing} | ||||||
|  | \usetikzlibrary{decorations.pathmorphing} | ||||||
|  |  | ||||||
|  | \begin{tikzpicture} | ||||||
|  |  | ||||||
|  | % draw axis | ||||||
|  | \draw[thick, ->] (-0.5cm, 0cm) -- (5cm, 0cm) node[anchor=south] {$\Re \omega$}; | ||||||
|  | \draw[thick, ->] (0cm, -1cm) -- (0cm, 3cm) node[anchor=east] {$\Im \omega$}; | ||||||
|  |  | ||||||
|  | % draw branching cuts | ||||||
|  | \filldraw[fill=black!30, draw=black, dashed] (0cm, 2pt) rectangle (4.8cm, -2pt); | ||||||
|  | \filldraw[fill=black!10, draw=black, dashed] (1cm, 1pt) rectangle (4.8cm, -1pt); | ||||||
|  |  | ||||||
|  | % draw branching points | ||||||
|  | \filldraw[fill=white, draw=black] (4.8cm, 0cm) circle (2pt) node[anchor=north] (x1) {$\infty$}; | ||||||
|  | \filldraw[fill=white, draw=black] (1cm, 0cm) circle (2pt) node[anchor=north] (x2) {$1$}; | ||||||
|  | \filldraw[fill=white, draw=black] (0cm, 0cm) circle (2pt) node[anchor=north east] (x3) {$0$}; | ||||||
|  |  | ||||||
|  | \end{tikzpicture} | ||||||
|  |  | ||||||
|  | % vim: ft=tex | ||||||
							
								
								
									
										80
									
								
								thesis.tex
									
									
									
									
									
								
							
							
						
						
									
										80
									
								
								thesis.tex
									
									
									
									
									
								
							| @@ -521,7 +521,7 @@ | |||||||
|     \pause |     \pause | ||||||
|  |  | ||||||
|     \begin{columns} |     \begin{columns} | ||||||
|       \begin{column}{0.5\linewidth} |       \begin{column}{0.4\linewidth} | ||||||
|         \centering |         \centering | ||||||
|         \resizebox{0.9\columnwidth}{!}{\import{img}{welladapted.pgf}} |         \resizebox{0.9\columnwidth}{!}{\import{img}{welladapted.pgf}} | ||||||
|       \end{column} |       \end{column} | ||||||
| @@ -531,9 +531,10 @@ | |||||||
|           \qty( X_{(t)} )^I |           \qty( X_{(t)} )^I | ||||||
|           = |           = | ||||||
|           \tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I |           \tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I | ||||||
|           \quad |         \end{equation*} | ||||||
|           \text{s.t.} |         \pause | ||||||
|           \quad |         where | ||||||
|  |         \begin{equation*} | ||||||
|           R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )} |           R_{(t)} \in \frac{\mathrm{SO}(4)}{\mathrm{S}\qty( \mathrm{O}(2) \times \mathrm{O}(2) )} | ||||||
|         \end{equation*} |         \end{equation*} | ||||||
|         \pause |         \pause | ||||||
| @@ -598,6 +599,77 @@ | |||||||
|     \end{equationblock} |     \end{equationblock} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
|  |   \begin{frame}{Doubling Trick and Spinor Representation} | ||||||
|  |     \begin{block}{Doubling Trick} | ||||||
|  |       \begin{equation*} | ||||||
|  |         \partial_z \mathcal{X}( z ) | ||||||
|  |         = | ||||||
|  |         \begin{cases} | ||||||
|  |           \partial_u X( u ) | ||||||
|  |           & \text{if}~z \in \mathscr{H}_{>}^{(\overline{t})} | ||||||
|  |           \\ | ||||||
|  |           U_{(\overline{t})}\, \partial_{\overline{u}} \overline{X}( \overline{u} ) | ||||||
|  |           & \text{if}~z \in \mathscr{H}_{<}^{(\overline{t})} | ||||||
|  |         \end{cases} | ||||||
|  |         \quad | ||||||
|  |         \Rightarrow | ||||||
|  |         \quad | ||||||
|  |         \mqty{% | ||||||
|  |           \partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_+ ) | ||||||
|  |           = | ||||||
|  |           \mathcal{U}_{(t,\, t+1)}\, | ||||||
|  |           \partial_{z} \mathcal{X}( x_{(t)} + \updelta_+ ), | ||||||
|  |           \\ | ||||||
|  |           \partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i} \updelta_- ) | ||||||
|  |           = | ||||||
|  |           \widetilde{\mathcal{U}}_{(t,\, t+1)}\, | ||||||
|  |           \partial_{z} \mathcal{X}( x_{(t)} + \updelta_- ), | ||||||
|  |         } | ||||||
|  |       \end{equation*} | ||||||
|  |       where $\mathscr{H}_{\gtrless}^{(t)} = \qty{z \in \mathds{C} \mid \Im z \gtrless 0~\text{or}~z \in D_{(t)} }$ and $\updelta_{\pm} = \upeta \pm i 0^+$. | ||||||
|  |     \end{block} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{tikzpicture}[remember picture, overlay] | ||||||
|  |       \draw[line width=4pt, red] (31em,6em) ellipse (0.8cm and 1.2cm); | ||||||
|  |     \end{tikzpicture} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     Use \highlight{Pauli matrices} $\uptau = \qty( i\, \mathds{1}_2, \vec{\upsigma} )$: | ||||||
|  |     \begin{equation*} | ||||||
|  |       \partial_z \mathcal{X}_{(s)}( z ) | ||||||
|  |       = | ||||||
|  |       \partial_z \mathcal{X}^I( z )\, \uptau_I | ||||||
|  |       \quad | ||||||
|  |       \Rightarrow | ||||||
|  |       \quad | ||||||
|  |       \partial_{z} \mathcal{X}( x_{(t)} + e^{2 \uppi i}\, \updelta_{\pm} ) | ||||||
|  |       = | ||||||
|  |       \overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)}\, | ||||||
|  |       \partial_{z} \mathcal{X}( x_{(t)} + \updelta_{\pm} )\, | ||||||
|  |       \overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)}\, | ||||||
|  |     \end{equation*} | ||||||
|  |     where | ||||||
|  |     \begin{equation*} | ||||||
|  |       \overset{\qty(\sim)}{\mathcal{L}}_{(t,\, t+1)} \in \mathrm{SU}(2)_L | ||||||
|  |       \quad | ||||||
|  |       \text{and} | ||||||
|  |       \quad | ||||||
|  |       \overset{\qty(\sim)}{\mathcal{R}}_{(t,\, t+1)} \in \mathrm{SU}(2)_R | ||||||
|  |     \end{equation*} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|  |   \begin{frame}{Hypergeometric Basis} | ||||||
|  |     \begin{columns} | ||||||
|  |       \begin{column}{0.5\linewidth} | ||||||
|  |         \centering | ||||||
|  |         \resizebox{0.8\columnwidth} | ||||||
|  |       \end{column} | ||||||
|  |     \end{columns} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|   \section[Time Divergences]{Cosmological Backgrounds and Divergences} |   \section[Time Divergences]{Cosmological Backgrounds and Divergences} | ||||||
|  |  | ||||||
|   \begin{frame}{BBB} |   \begin{frame}{BBB} | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user