Add animation of the convolution network
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										518
									
								
								thesis.tex
									
									
									
									
									
								
							
							
						
						
									
										518
									
								
								thesis.tex
									
									
									
									
									
								
							| @@ -12,6 +12,7 @@ | ||||
| \usepackage{upgreek} | ||||
| \usepackage{physics} | ||||
| \usepackage{tensor} | ||||
| \usepackage{animate} | ||||
| \usepackage{graphicx} | ||||
| \usepackage{transparent} | ||||
| \usepackage{tikz} | ||||
| @@ -26,7 +27,7 @@ | ||||
| \usecolortheme{crane} | ||||
| \usefonttheme{structurebold} | ||||
| \setbeamertemplate{navigation symbols}{} | ||||
| \addtobeamertemplate{background canvas}{\transfade[duration=0.25]}{} | ||||
| \addtobeamertemplate{background canvas}{\transfade[duration=0.15]}{} | ||||
|  | ||||
| \author[Finotello]{Riccardo Finotello} | ||||
| \title[D-branes and Deep Learning]{D-branes and Deep Learning} | ||||
| @@ -58,7 +59,7 @@ | ||||
| \newcommand{\highlight}[1]{\fcolorbox{yellow}{yellow!20}{#1}} | ||||
| \renewcommand{\cite}[1]{{\tiny{\fcolorbox{red}{red!10}{[#1]}}}} | ||||
|  | ||||
| \newcommand{\firstlogo}{img/unito} | ||||
| \newcommand{\firstlogo}{img/unito.pdf} | ||||
| \newcommand{\thefirstlogo}{% | ||||
|   \begin{figure} | ||||
|     \centering | ||||
| @@ -66,7 +67,7 @@ | ||||
|   \end{figure} | ||||
| } | ||||
|  | ||||
| \newcommand{\secondlogo}{img/infn} | ||||
| \newcommand{\secondlogo}{img/infn.pdf} | ||||
| \newcommand{\thesecondlogo}{% | ||||
|   \begin{figure} | ||||
|     \centering | ||||
| @@ -160,7 +161,7 @@ | ||||
|   } | ||||
|  | ||||
|   {% | ||||
|     % \setbeamertemplate{footline}{} | ||||
|     \setbeamertemplate{footline}{} | ||||
|     \usebackgroundtemplate{% | ||||
|       \transparent{0.1} | ||||
|       \includegraphics[width=\paperwidth]{img/torino.png} | ||||
| @@ -203,79 +204,52 @@ | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \begin{columns} | ||||
|       \begin{column}[t]{0.5\linewidth} | ||||
|         \highlight{Symmetries:} | ||||
|         \begin{itemize} | ||||
|           \item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$ | ||||
|  | ||||
|           \item \textbf{2D diff.}\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \upgamma_{\uplambda \uprho}$ | ||||
|  | ||||
|           \item \textbf{Weyl transf.}\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \upgamma_{\upalpha \upbeta}$ | ||||
|         \end{itemize} | ||||
|     \begin{columns}[T, totalwidth=0.935\linewidth] | ||||
|       \begin{column}{0.45\linewidth} | ||||
|         \begin{tabular}{@{}ll@{}} | ||||
|           Symmetries: & | ||||
|           \\ | ||||
|           \toprule | ||||
|           \textbf{Poincaré transf.}: &  | ||||
|           $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$ | ||||
|           \\ | ||||
|           \textbf{2D diff.}: & | ||||
|           $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \upgamma_{\uplambda \uprho}$ | ||||
|           \\ | ||||
|           \textbf{Weyl transf.}: & | ||||
|           $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \upgamma_{\upalpha \upbeta}$ | ||||
|           \\ | ||||
|         \end{tabular} | ||||
|       \end{column} | ||||
|       \hfill | ||||
|       \begin{column}{0.45\linewidth} | ||||
|         \begin{tabular}{@{}ll@{}} | ||||
|           Conformal symmetry: & | ||||
|           \\ | ||||
|           \toprule | ||||
|           \textbf{vanishing} stress-energy tensor: & | ||||
|           $\mathcal{T}_{\upalpha \upbeta} = 0$ | ||||
|           \\ | ||||
|           \textbf{traceless} stress-energy tensor: & | ||||
|           $\trace{\mathcal{T}} = 0$ | ||||
|           \\ | ||||
|           \textbf{conformal gauge}: & | ||||
|           $\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$ | ||||
|           \\ | ||||
|         \end{tabular} | ||||
|  | ||||
|       \pause | ||||
|         \pause | ||||
|  | ||||
|       \begin{column}[t]{0.5\linewidth} | ||||
|         \highlight{Conformal symmetry:} | ||||
|         \begin{itemize} | ||||
|           \item \textbf{vanishing} stress-energy tensor: $\mathcal{T}_{\upalpha \upbeta} = 0$ | ||||
|            | ||||
|           \item \textbf{traceless} stress-energy tensor: $\trace{\mathcal{T}} = 0$ | ||||
|  | ||||
|           \item \textbf{conformal gauge} $\upgamma_{\upalpha \upbeta} = e^{\upphi}\, \upeta_{\upalpha \upbeta}$ | ||||
|         \end{itemize} | ||||
|         \begin{center} | ||||
|           \highlight{Conformal properties fixed by \textbf{OPE}s.} | ||||
|         \end{center} | ||||
|       \end{column} | ||||
|     \end{columns} | ||||
|   \end{frame} | ||||
|  | ||||
|  | ||||
|   % \begin{frame}{Action Principle and Conformal Symmetry} | ||||
|   %   \begin{columns} | ||||
|   %     \begin{column}{0.6\linewidth} | ||||
|   %       \highlight{% | ||||
|   %         Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$: | ||||
|   %       } | ||||
|   %       \begin{equation*} | ||||
|   %         \mathcal{T}( z )\, \Upphi_h( w ) | ||||
|   %         \stackrel{z \to w}{\sim} | ||||
|   %         \frac{h}{(z - w)^2} \Upphi_h( w ) | ||||
|   %         + | ||||
|   %         \frac{1}{z - w} \partial_w \Upphi_h( w ) | ||||
|   %       \end{equation*} | ||||
|   %       \begin{equation*} | ||||
|   %         \mathcal{T}( z )\, \mathcal{T}( w ) | ||||
|   %         \stackrel{z \to w}{\sim} | ||||
|   %         \frac{\frac{c}{2}}{(z - w)^4} | ||||
|   %         + | ||||
|   %         \order{(z - w)^{-2}} | ||||
|   %       \end{equation*} | ||||
|  | ||||
|   %       \begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$} | ||||
|   %         \begin{eqnarray*} | ||||
|   %           \qty[ \overset{\scriptscriptstyle(-)}{L}_n,\, \overset{\scriptscriptstyle(-)}{L}_m ] | ||||
|   %           & = & | ||||
|   %           (n - m) \overset{\scriptscriptstyle(-)}{L}_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0} | ||||
|   %           \\ | ||||
|   %           \qty[ L_n,\, \overline{L}_m ] | ||||
|   %           & = & | ||||
|   %           0 | ||||
|   %         \end{eqnarray*} | ||||
|   %       \end{equationblock} | ||||
|   %     \end{column} | ||||
|  | ||||
|   %     \begin{column}{0.4\linewidth} | ||||
|   %       \begin{figure}[h] | ||||
|   %         \centering | ||||
|   %         \resizebox{0.9\columnwidth}{!}{\import{img}{complex_plane.pgf}} | ||||
|   %       \end{figure} | ||||
|   %     \end{column} | ||||
|   %   \end{columns} | ||||
|   % \end{frame} | ||||
|  | ||||
|   \begin{frame}{Action Principle and Conformal Symmetry} | ||||
|     \highlight{Superstrings in $D$ dimensions:} | ||||
|     Superstrings in $D$ dimensions $\longrightarrow$ \emph{Virasoro algebra} (central extension of de Witt's algebra): | ||||
|     \begin{equation*} | ||||
|       \mathcal{T}( z ) | ||||
|       = | ||||
| @@ -311,7 +285,7 @@ | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \highlight{Consequence:} | ||||
|     Consequence: | ||||
|     \begin{equation*} | ||||
|       c_{\text{full}} = c + c_{\text{ghost}} = 0 | ||||
|       \quad | ||||
| @@ -324,152 +298,145 @@ | ||||
|  | ||||
|   \begin{frame}{Extra Dimensions and Compactification} | ||||
|     \begin{block}{Compactification} | ||||
|       \begin{columns} | ||||
|         \begin{column}{0.7\linewidth} | ||||
|       \begin{columns}[T, totalwidth=0.95\linewidth] | ||||
|         \begin{column}{0.8\linewidth} | ||||
|           \begin{equation*} | ||||
|             \mathscr{M}^{1,\, 9} | ||||
|             = | ||||
|             \mathscr{M}^{1,\, 3} \otimes \mathscr{X}_6 | ||||
|           \end{equation*} | ||||
|           \vspace{-1em} | ||||
|           \begin{itemize} | ||||
|             \item $\mathscr{X}_6$ is a \textbf{compact} manifold | ||||
|  | ||||
|             \item $N = 1$ \textbf{supersymmetry} is preserved in 4D | ||||
|             \item $N = 1$ \textbf{supersymmetry} preserved in 4D | ||||
|  | ||||
|             \item algebra of $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ in arising \textbf{gauge group} | ||||
|           \end{itemize} | ||||
|         \end{column} | ||||
|  | ||||
|         \begin{tikzpicture}[remember picture, overlay] | ||||
|           \node[anchor=base] at (8em,-3.3em) {\cite{code in Hanson (1994)}}; | ||||
|           \node[anchor=base] at (3em,-3.75em) {\includegraphics[width=0.3\linewidth]{img/cy}}; | ||||
|           \node[anchor=base] at (-2em,-6em) {\cite{code in Hanson (1994)}}; | ||||
|           \node[anchor=base] at (-7em,-6em) {\includegraphics[width=0.25\linewidth]{img/cy.png}}; | ||||
|         \end{tikzpicture} | ||||
|         \begin{column}{0.3\linewidth} | ||||
|         %   \centering | ||||
|         %   \includegraphics[width=0.9\columnwidth]{img/cy} | ||||
|         \end{column} | ||||
|       \end{columns} | ||||
|     \end{block} | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \begin{columns} | ||||
|       \begin{column}[t]{0.5\linewidth} | ||||
|         \highlight{Kähler manifolds} $\qty( M,\, g )$ such that | ||||
|     \vfill | ||||
|     \begin{columns}[T, totalwidth=0.95\linewidth] | ||||
|       \begin{column}{0.475\linewidth} | ||||
|         \textbf{Kähler manifolds} $\qty( M,\, g )$ such that: | ||||
|         \begin{itemize} | ||||
|           \item $\dim\limits_{\mathds{C}} M = m$ | ||||
|  | ||||
|           \item $\mathrm{Hol}( g ) \subseteq \mathrm{SU}( m )$ | ||||
|  | ||||
|           \item $g$ is Ricci-flat (equiv.\ $c_1\qty( M )$ vanishes) | ||||
|           \item $\mathrm{Ric}( g ) \equiv 0$ (equiv.\ $c_1\qty( M ) \equiv 0$) | ||||
|         \end{itemize} | ||||
|       \end{column} | ||||
|       \hfill | ||||
|  | ||||
|       \pause | ||||
|  | ||||
|       \begin{column}[t]{0.5\linewidth} | ||||
|         Characterised by \highlight{Hodge numbers} | ||||
|       \begin{column}{0.475\linewidth} | ||||
|         Characterised by \textbf{Hodge numbers} | ||||
|         \begin{equation*} | ||||
|           h^{r,\,s} = \dim\limits_{\mathds{C}} H_{\overline{\partial}}^{r,\,s}\qty( M,\, \mathds{C} ) | ||||
|         \end{equation*} | ||||
|         counting the no.\ of harmonic $(r,\,s)$-forms. | ||||
|         counting the no.\ of harmonic $(r,s)$-forms. | ||||
|       \end{column} | ||||
|     \end{columns} | ||||
|   \end{frame} | ||||
|  | ||||
|   \begin{frame}{D-branes and Open Strings} | ||||
|     Polyakov's action naturally introduces \highlight{Neumann b.c.:} | ||||
|     Polyakov's action naturally introduces \textbf{Neumann b.c.} for \textbf{open strings}: | ||||
|     \begin{equation*} | ||||
|       \eval{\partial_{\upsigma} X\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 | ||||
|     \end{equation*} | ||||
|     satisfied by \textbf{open and closed} strings living in $D$ dimensions s.t.\ $\square X = 0$. | ||||
|     satisfied by \highlight{\textbf{open and closed strings} in $D$ dim.} s.t.\ $\square X = 0 \Rightarrow X( z, \overline{z} ) = X( z ) + \overline{X}( \overline{z} )$. | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \begin{equationblock}{T-duality} | ||||
|     % \begin{equationblock}{Equivalent Theories of Closed String Compactification} | ||||
|     %   \begin{equation*} | ||||
|     %     X( z, \overline{z} ) | ||||
|     %     = | ||||
|     %     X( z ) + \overline{X}( \overline{z} ) | ||||
|     %     \quad | ||||
|     %     \stackrel{T-dual}{\Rightarrow} | ||||
|     %     \quad | ||||
|     %     X( z ) - \overline{X}( \overline{z} ) | ||||
|     %     = | ||||
|     %     Y( z, \overline{z} ) | ||||
|     %     = | ||||
|     %     Y( z ) + \overline{Y}( \overline{z} ) | ||||
|     %   \end{equation*} | ||||
|     % \end{equationblock} | ||||
|  | ||||
|     % \pause | ||||
|  | ||||
|     \begin{block}{T-duality} | ||||
|       \textbf{Dirichlet b.c.} consequence of \textbf{T-duality} on $p$ directions: | ||||
|       \begin{equation*} | ||||
|         X( z, \overline{z} ) | ||||
|         = | ||||
|         X( z ) + \overline{X}( \overline{z} ) | ||||
|         \overline{X}( z ) \mapsto - \overline{X}( z ) | ||||
|         \quad | ||||
|         \stackrel{T}{\Rightarrow} | ||||
|         \Rightarrow | ||||
|         \quad | ||||
|         X( z ) - \overline{X}( \overline{z} ) | ||||
|         = | ||||
|         Y( z, \overline{z} ) | ||||
|         = | ||||
|         Y( z ) + \overline{Y}( \overline{z} ) | ||||
|         \eval{\partial_{\upsigma} X^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 | ||||
|         \quad | ||||
|         \stackrel{T-duality}{\longrightarrow} | ||||
|         \quad | ||||
|         \eval{\partial_{\uptau} \widetilde{X}^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 | ||||
|       \end{equation*} | ||||
|     \end{equationblock} | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     Resulting effect (repeated $p \le D - 1$ times) leads to \highlight{Dirichlet b.c.:} | ||||
|     \begin{equation*} | ||||
|       \eval{\partial_{\upsigma} X^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 | ||||
|       \quad | ||||
|       \stackrel{T}{\Rightarrow} | ||||
|       \quad | ||||
|       \eval{\partial_{\uptau} Y^i\qty( \uptau, \upsigma )}_{\upsigma = 0}^{\upsigma = \ell} = 0 | ||||
|       \quad | ||||
|       \forall i = 1, 2,\, \dots,\, p | ||||
|     \end{equation*} | ||||
|     thus \textbf{open strings} can be \textbf{constrained} to \highlight{$D(D - p - 1)$-branes.} | ||||
|     \hfill | ||||
|     \cite{Polchinski (1995, 1996)} | ||||
|       thus \textbf{open strings} can be \textbf{constrained} to $D(D - p - 1)$-branes. | ||||
|       \hfill | ||||
|       \cite{Polchinski (1995, 1996)} | ||||
|     \end{block} | ||||
|   \end{frame} | ||||
|  | ||||
|   \begin{frame}{D-branes and Open Strings} | ||||
|     Introducing $Dp$-branes breaks \highlight{$\mathrm{ISO}(1,\, D-1) \rightarrow \mathrm{ISO}( 1, p ) \otimes \mathrm{SO}( D - 1 - p )$.} | ||||
|     Introducing $Dp$-branes breaks \highlight{$\mathrm{ISO}(1,\, D-1) \rightarrow \mathrm{ISO}( 1, p ) \otimes \mathrm{SO}( D - 1 - p )$}: | ||||
|     \begin{equation*} | ||||
|       \mathcal{A}^{\upmu} \rightarrow \qty( \mathcal{A}^A,\, \mathcal{A}^a ) | ||||
|       \quad | ||||
|       \Rightarrow | ||||
|       \quad | ||||
|       \mathrm{U}( 1 )~\text{theory~in}~p+1~\text{dimensions~(and~scalars)} | ||||
|     \end{equation*} | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \begin{equationblock}{Massless Spectrum (\emph{irrep} of \textbf{little group} $\mathrm{SO}( D - 2 )$)} | ||||
|       \begin{equation*} | ||||
|         \mathcal{A}^{\upmu} | ||||
|         \quad \leftrightarrow \quad | ||||
|         \upalpha_{-1}^{\upmu} \ket{0} | ||||
|         \qquad | ||||
|         \longrightarrow | ||||
|         \qquad | ||||
|         \begin{tabular}{@{}llll@{}} | ||||
|           $\mathcal{A}^A$ | ||||
|           & | ||||
|           $\leftrightarrow$ | ||||
|           & | ||||
|           $\upalpha_{-1}^A \ket{0},$ | ||||
|           & | ||||
|           $A = 0,\, 1,\, \dots,\, p$ | ||||
|           \\ | ||||
|           $\mathcal{A}^a$ | ||||
|           & | ||||
|           $\leftrightarrow$ | ||||
|           & | ||||
|           $\upalpha_{-1}^a \ket{0},$ | ||||
|           & | ||||
|           $a = 1,\, 2,\, \dots,\, D - p - 1$ | ||||
|         \end{tabular} | ||||
|       \end{equation*} | ||||
|     \end{equationblock} | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \begin{columns} | ||||
|       \begin{column}{0.5\linewidth} | ||||
|     \vspace{2em} | ||||
|     \begin{columns}[T, totalwidth=0.95\linewidth] | ||||
|       \begin{column}{0.475\linewidth} | ||||
|         \centering | ||||
|         \resizebox{0.55\columnwidth}{!}{\import{img}{chanpaton.pgf}} | ||||
|       \end{column} | ||||
|         \resizebox{0.5\columnwidth}{!}{\import{img}{chanpaton.pgf}} | ||||
|  | ||||
|       \begin{column}{0.5\linewidth} | ||||
|         Introducing \textbf{Chan--Paton factors} $\tensor{\uplambda}{^r_{ij}}$, when branes are \textbf{coincident}: | ||||
|         \hfill\cite{Chan, Paton (1969)} | ||||
|         \cite{Chan, Paton (1969)} | ||||
|         \begin{equation*} | ||||
|           \bigoplus\limits_{r = 1}^N \mathrm{U}_r(1) | ||||
|           \quad | ||||
|           \longrightarrow | ||||
|           \quad | ||||
|           \mathrm{U}( N ) | ||||
|           \ket{n;\, r} | ||||
|           = | ||||
|           \sum\limits_{i,\, j = 1}^N | ||||
|           \ket{n;\, i,\, j}\, | ||||
|           \tensor{\uplambda}{^r_{ij}} | ||||
|         \end{equation*} | ||||
|       \end{column} | ||||
|       \hfill | ||||
|       \pause | ||||
|  | ||||
|       \begin{column}{0.475\linewidth} | ||||
|         \begin{block}{Chan--Paton Factors} | ||||
|           When branes are \textbf{coincident}: | ||||
|           \begin{equation*} | ||||
|             \bigoplus\limits_{r = 1}^N \mathrm{U}_r(1) | ||||
|             \quad | ||||
|             \longrightarrow | ||||
|             \quad | ||||
|             \mathrm{U}( N ) | ||||
|           \end{equation*} | ||||
|         \end{block} | ||||
|         \pause | ||||
|         \highlight{Build gauge bosons, fermions and scalars.} | ||||
|       \end{column} | ||||
| @@ -542,6 +509,7 @@ | ||||
|           \qty( X_{(t)} )^I | ||||
|           = | ||||
|           \tensor{\qty( R_{(t)} )}{^I_J}\, X^J - g_{(t)}^I | ||||
|           \in \mathds{R}^4 | ||||
|         \end{equation*} | ||||
|         \pause | ||||
|         where | ||||
| @@ -567,9 +535,9 @@ | ||||
|     \begin{columns} | ||||
|       \begin{column}{0.6\linewidth} | ||||
|         \begin{itemize} | ||||
|           \item consider $u = x + i y = e^{\uptau_e + i \upsigma}$ and $\overline{u} = u^*$ | ||||
|           \item $u = x + i y = e^{\uptau_e + i \upsigma}$ and $\overline{u} = u^*$ | ||||
|  | ||||
|           \item let $x_{(t)} < x_{(t-1)}$ be the \textbf{worldsheet intersection points} on \textbf{real axis} | ||||
|           \item $x_{(t)} < x_{(t-1)}$ \textbf{worldsheet intersection points} | ||||
|  | ||||
|           \item $X_{(t)}^{1,\, 2}$ are \textbf{Neumann}, $X_{(t)}^{3,\, 4}$ are \textbf{Dirichlet} | ||||
|         \end{itemize} | ||||
| @@ -685,7 +653,7 @@ | ||||
|           \begin{split} | ||||
|             \partial_z \mathcal{X}( z ) | ||||
|             & = | ||||
|             \sum\limits_{l,\, r} c_{lr}\, | ||||
|             \sum\limits_{l,\, r = -\infty}^{+\infty} c_{lr}\, | ||||
|             \qty( - \upomega_z )^{A_{lr}}\, | ||||
|             \qty( 1 - \upomega_z )^{B_{lr}}\, | ||||
|             B_{0,\, l}^{(L)}( \omega_z )\, | ||||
| @@ -718,7 +686,7 @@ | ||||
|   \end{frame} | ||||
|  | ||||
|   \begin{frame}{The Solution} | ||||
|     \highlight{Operations sequence:} | ||||
|     Sequence of the operations: | ||||
|     \begin{enumerate} | ||||
|       \item rotation matrix $=$ monodromy matrix | ||||
|  | ||||
| @@ -742,20 +710,19 @@ | ||||
|         \begin{columns} | ||||
|           \begin{column}{0.4\linewidth} | ||||
|             \centering | ||||
|             \resizebox{0.607\columnwidth}{!}{\import{img}{branesangles.pgf}} | ||||
|             \resizebox{0.6\columnwidth}{!}{\import{img}{branesangles.pgf}} | ||||
|           \end{column} | ||||
|           \hfill | ||||
|           \begin{column}{0.6\linewidth} | ||||
|             \begin{equation*} | ||||
|               \begin{split} | ||||
|                 \eval{S_{\mathds{R}^4}}_{\text{on-shell}} | ||||
|                 2 \uppi \upalpha' \eval{S_{\mathds{R}^4}}_{\text{on-shell}} | ||||
|                 & = | ||||
|                 \frac{1}{2\uppi \upalpha'} | ||||
|                 \sum\limits_{t = 1}^3 | ||||
|                 \qty( \frac{1}{2} \abs{g_{(t)}^{\perp}} \abs{f_{(t-1)} - f_{(t)}} ) | ||||
|                 \\ | ||||
|                 & = | ||||
|                 \text{Area}\qty( \qty{ f_{(t)} } ) | ||||
|                 \text{Area}\qty( \qty{ f_{(t)} }_{1 \le t \le N_B} ) | ||||
|               \end{split} | ||||
|             \end{equation*} | ||||
|           \end{column} | ||||
| @@ -763,8 +730,23 @@ | ||||
|         \vfill | ||||
|       } | ||||
|       \only<6->{% | ||||
|         \centering | ||||
|         \resizebox{0.25\columnwidth}{!}{\import{img}{brane3d.pgf}} | ||||
|         \begin{columns} | ||||
|           \begin{column}{0.35\linewidth} | ||||
|             \centering | ||||
|             \resizebox{0.8\columnwidth}{!}{\import{img}{brane3d.pgf}} | ||||
|           \end{column} | ||||
|           \hfill | ||||
|           \begin{column}{0.6\linewidth} | ||||
|             \begin{itemize} | ||||
|               \item strings no longer confined to plane | ||||
|  | ||||
|               \item strings form a \emph{small bump} from the D-brane | ||||
|  | ||||
|               \item classical action \textbf{larger} than factorised case | ||||
|             \end{itemize} | ||||
|           \end{column} | ||||
|         \end{columns} | ||||
|         \vfill | ||||
|       } | ||||
|     \end{block} | ||||
|   \end{frame} | ||||
| @@ -773,7 +755,7 @@ | ||||
|   \subsection[Fermions]{Fermions and Point-like Defect CFT} | ||||
|  | ||||
|   \begin{frame}{Fermions on the Strip} | ||||
|     \begin{columns} | ||||
|     \begin{columns}[totalwidth=0.95\linewidth] | ||||
|       \begin{column}{0.4\linewidth} | ||||
|         \centering | ||||
|         \resizebox{0.9\columnwidth}{!}{\import{img}{defects.pgf}} | ||||
| @@ -803,7 +785,7 @@ | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \begin{block}{Stress-energy Tensor} | ||||
|     \begin{equationblock}{Stress-energy Tensor} | ||||
|       \begin{equation*} | ||||
|         \mathcal{T}_{\pm\pm}( \upxi_{\pm} ) | ||||
|         = | ||||
| @@ -839,11 +821,11 @@ | ||||
|           0 | ||||
|         \end{cases} | ||||
|       \end{equation*} | ||||
|     \end{block} | ||||
|     \end{equationblock} | ||||
|   \end{frame} | ||||
|  | ||||
|   \begin{frame}{Conserved Product and Operators} | ||||
|     Expand on a \highlight{basis of solutions} | ||||
|     Expand on a \textbf{basis of solutions} | ||||
|     \begin{equation*} | ||||
|       \uppsi_{\pm}( \upxi_{\pm} ) | ||||
|       = | ||||
| @@ -890,7 +872,7 @@ | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     Derive the \highlight{algebra of operators:} | ||||
|     Derive the \textbf{algebra of operators:} | ||||
|     \begin{equation*} | ||||
|       \qty[ b_n,\, b_m^{\dagger} ]_+ | ||||
|       = | ||||
| @@ -956,7 +938,7 @@ | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     Theories are subject to \highlight{consistency conditions:} | ||||
|     Theories are subject to \textbf{consistency conditions:} | ||||
|     \begin{columns} | ||||
|       \begin{column}{0.6\linewidth} | ||||
|         \begin{equation*} | ||||
| @@ -977,7 +959,7 @@ | ||||
|   \end{frame} | ||||
|  | ||||
|   \begin{frame}{Stress-energy Tensor and CFT Approach} | ||||
|     Compute the OPEs leading to the \highlight{stress-energy tensor:} | ||||
|     Compute the OPEs leading to the \textbf{stress-energy tensor:} | ||||
|     \begin{equation*} | ||||
|       \mathcal{T}( z ) | ||||
|       = | ||||
| @@ -1070,7 +1052,7 @@ | ||||
|     \begin{columns} | ||||
|       \begin{column}{0.5\linewidth} | ||||
|         \centering | ||||
|         \includegraphics[width=0.9\columnwidth]{img/cone} | ||||
|         \includegraphics[width=0.9\columnwidth]{img/cone.pdf} | ||||
|       \end{column} | ||||
|       \hfill | ||||
|       \begin{column}{0.5\linewidth} | ||||
| @@ -1100,50 +1082,45 @@ | ||||
|   \end{frame} | ||||
|  | ||||
|   \begin{frame}{Orbifolds} | ||||
|     \begin{columns}[c] | ||||
|     \begin{columns}[T] | ||||
|       \begin{column}{0.475\linewidth} | ||||
|         \begin{center} | ||||
|         \begin{tabular}{@{}l@{}} | ||||
|           \textbf{Mathematics} | ||||
|  | ||||
|           \begin{itemize} | ||||
|             \item manifold $M$ | ||||
|  | ||||
|             \item (Lie) group $G$ | ||||
|  | ||||
|             \item \emph{stabilizer}: $G_p = \qty{g \in G \mid gp = p \in M}$ | ||||
|  | ||||
|             \item \emph{orbit}: $Gp = \qty{gp \in M \mid g \in G}$ | ||||
|  | ||||
|             \item charts $\upphi = \uppi \circ \mathscr{P}$ where: | ||||
|  | ||||
|             \begin{itemize} | ||||
|               \item $\mathscr{P}\colon U \subset \mathds{R}^n \to U / G$ | ||||
|  | ||||
|               \item $\uppi\colon U / G \to M$ | ||||
|             \end{itemize} | ||||
|           \end{itemize} | ||||
|         \end{center} | ||||
|       \end{column} | ||||
|       \begin{column}{0.05\linewidth} | ||||
|         \centering | ||||
|         $\Rightarrow$ | ||||
|           \\ | ||||
|           \toprule | ||||
|           manifold $M$ | ||||
|           \\ | ||||
|           (Lie) group $G$ | ||||
|           \\ | ||||
|           \emph{stabilizer}: $G_p = \qty{g \in G \mid gp = p \in M}$ | ||||
|           \\ | ||||
|           \emph{orbit}: $Gp = \qty{gp \in M \mid g \in G}$ | ||||
|           \\ | ||||
|           charts $\upphi = \uppi \circ \mathscr{P}$ where: | ||||
|           \\ | ||||
|           \vspace{1em}$\mathscr{P}\colon U \subset \mathds{R}^n \to U / G$ | ||||
|           \\ | ||||
|           \vspace{1em}$\uppi\colon U / G \to M$ | ||||
|           \\ | ||||
|         \end{tabular} | ||||
|       \end{column} | ||||
|       \hfill | ||||
|       \begin{column}{0.475\linewidth} | ||||
|         \begin{center} | ||||
|         \begin{tabular}{@{}l@{}} | ||||
|           \textbf{Physics} | ||||
|  | ||||
|           \begin{itemize} | ||||
|             \item global orbit space $M / G$ | ||||
|  | ||||
|             \item $G$ group of isometries | ||||
|  | ||||
|             \item fixed points | ||||
|  | ||||
|             \item additional d.o.f.\ (\emph{twisted states}) | ||||
|  | ||||
|             \item singular limits of CY manifolds | ||||
|           \end{itemize} | ||||
|         \end{center} | ||||
|           \\ | ||||
|           \toprule | ||||
|           global orbit space $M / G$ | ||||
|           \\ | ||||
|           $G$ group of isometries | ||||
|           \\ | ||||
|           fixed points | ||||
|           \\ | ||||
|           additional d.o.f.\ (\emph{twisted states}) | ||||
|           \\ | ||||
|           singular limits of CY manifolds | ||||
|           \\ | ||||
|         \end{tabular} | ||||
|       \end{column} | ||||
|     \end{columns} | ||||
|  | ||||
| @@ -1217,7 +1194,7 @@ | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     Consider \highlight{scalar QED:} | ||||
|     Scalars on NBO: | ||||
|     \begin{equation*} | ||||
|       \upphi_{\qty{ k_+,\, l,\, \vec{k},\, r}}\qty( u,\, v,\, z,\, \vec{x} ) | ||||
|       = | ||||
| @@ -1266,8 +1243,9 @@ | ||||
|     \pause | ||||
|  | ||||
|     \begin{center} | ||||
|       \it | ||||
|       most terms \textbf{do not converge} due to \textbf{isolated zeros} ($l_{(*)} \equiv 0$) and cannot be recovered even with a \textbf{distributional interpretions} due to the term $\propto u^{-1}$ in the exponentatial | ||||
|       \emph{ | ||||
|         most terms \textbf{do not converge} due to \textbf{isolated zeros} \emph{($l_{(*)} \equiv 0$)} and cannot be recovered even with a \textbf{distributional interpretions} due to the term $\propto u^{-1}$ in the exponentatial | ||||
|       } | ||||
|     \end{center} | ||||
|   \end{frame} | ||||
|  | ||||
| @@ -1464,6 +1442,12 @@ | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \begin{tikzpicture}[remember picture, overlay] | ||||
|       \draw[line width=4pt, red] (13em, 5.5em) rectangle (22em, 0em); | ||||
|     \end{tikzpicture} | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \begin{block}{Machine Learning Approach} | ||||
|       What is $\mathscr{R}$? | ||||
|       \begin{equation*} | ||||
| @@ -1490,13 +1474,15 @@ | ||||
|  | ||||
|         \pause | ||||
|  | ||||
|       \item effectively use knowledge from \textbf{computer science, mathematics and physics} to solve problems | ||||
|       \item knowledge from \textbf{computer science, mathematics and physics} to solve problems | ||||
|  | ||||
|         \pause | ||||
|  | ||||
|       \item provide in-depth \textbf{data analysis} of the datasets | ||||
|     \end{itemize} | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \begin{center} | ||||
|       \includegraphics[width=0.7\linewidth]{img/label-distribution_orig} | ||||
|       \includegraphics[width=0.7\linewidth]{img/label-distribution_orig.pdf} | ||||
|     \end{center} | ||||
|   \end{frame} | ||||
|  | ||||
| @@ -1504,31 +1490,6 @@ | ||||
|   \subsection[Machine Learning]{Machine Learning for String Theory} | ||||
|  | ||||
|  | ||||
|   \begin{frame}{Exploratory Data Analysis} | ||||
|     Machine Learning \highlight{pipeline:} | ||||
|     \begin{center} | ||||
|       \textbf{exploratory} data analysis | ||||
|       $\rightarrow$ | ||||
|       feature \textbf{selection} | ||||
|       $\rightarrow$ | ||||
|       Hodge numbers | ||||
|     \end{center} | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \begin{columns} | ||||
|       \begin{column}{0.5\linewidth} | ||||
|         \centering | ||||
|         \includegraphics[width=0.9\columnwidth]{img/corr-matrix_orig} | ||||
|       \end{column} | ||||
|       \hfill | ||||
|       \begin{column}{0.5\linewidth} | ||||
|         \centering | ||||
|         \includegraphics[width=0.9\columnwidth, trim={0 0 6in 0}, clip]{img/scalar-features_orig} | ||||
|       \end{column} | ||||
|     \end{columns} | ||||
|   \end{frame} | ||||
|  | ||||
|   \begin{frame}{Dataset} | ||||
|     \begin{itemize} | ||||
|       \item $7890$ CICY manifolds (full dataset) | ||||
| @@ -1553,13 +1514,38 @@ | ||||
|     \pause | ||||
|  | ||||
|     \begin{center} | ||||
|       \includegraphics[width=0.7\linewidth]{img/label-distribution-compare_orig} | ||||
|       \includegraphics[width=0.7\linewidth]{img/label-distribution-compare_orig.pdf} | ||||
|     \end{center} | ||||
|   \end{frame} | ||||
|  | ||||
|   \begin{frame}{Exploratory Data Analysis} | ||||
|     Machine Learning \highlight{pipeline:} | ||||
|     \begin{center} | ||||
|       \textbf{exploratory} data analysis | ||||
|       $\rightarrow$ | ||||
|       feature \textbf{selection} | ||||
|       $\rightarrow$ | ||||
|       Hodge numbers | ||||
|     \end{center} | ||||
|  | ||||
|     \pause | ||||
|  | ||||
|     \begin{columns} | ||||
|       \begin{column}{0.5\linewidth} | ||||
|         \centering | ||||
|         \includegraphics[width=0.9\columnwidth]{img/corr-matrix_orig.pdf} | ||||
|       \end{column} | ||||
|       \hfill | ||||
|       \begin{column}{0.5\linewidth} | ||||
|         \centering | ||||
|         \includegraphics[width=0.9\columnwidth, trim={0 0 6in 0}, clip]{img/scalar-features_orig.pdf} | ||||
|       \end{column} | ||||
|     \end{columns} | ||||
|   \end{frame} | ||||
|  | ||||
|   \begin{frame}{Machine Learning} | ||||
|     \centering | ||||
|     \includegraphics[width=0.85\linewidth]{img/ml_map} | ||||
|     \includegraphics[width=0.85\linewidth]{img/ml_map.png} | ||||
|      | ||||
|     \begin{tikzpicture}[remember picture, overlay] | ||||
|       \node[anchor=base] at (16em,18em) {\cite{from scikit-learn.org}}; | ||||
| @@ -1584,9 +1570,9 @@ | ||||
|       \begin{column}{0.4\linewidth} | ||||
|         What is PCA for a $X \in \mathds{R}^{n \times p}$? | ||||
|         \begin{itemize} | ||||
|           \item find new coordinates to \textbf{``put the variance in order''} | ||||
|           \item project data onto a \textbf{lower dimensional} space where variance is maximised | ||||
|  | ||||
|           \item \highlight{equivalently} compute the \textbf{eigenvectors} of $X X^T$ or the \textbf{singular values} of $X$ | ||||
|           \item equivalently compute the \textbf{eigenvectors} of $X X^T$ or the \textbf{singular values} of $X$ | ||||
|  | ||||
|           \item isolate \textbf{the signal} from the \textbf{background} | ||||
|  | ||||
| @@ -1594,10 +1580,11 @@ | ||||
|         \end{itemize} | ||||
|       \end{column} | ||||
|       \hfill | ||||
|       \pause | ||||
|       \begin{column}{0.6\linewidth} | ||||
|         \centering | ||||
|         \includegraphics[width=0.5\columnwidth]{img/marchenko-pastur} | ||||
|         \includegraphics[width=\columnwidth]{img/svd_orig} | ||||
|         \includegraphics[width=0.5\columnwidth]{img/marchenko-pastur.pdf} | ||||
|         \includegraphics[width=\columnwidth]{img/svd_orig.pdf} | ||||
|       \end{column} | ||||
|     \end{columns} | ||||
|   \end{frame} | ||||
| @@ -1607,13 +1594,13 @@ | ||||
|       \begin{column}{0.5\linewidth} | ||||
|         \centering | ||||
|         \textbf{Configuration Matrix Only} | ||||
|         \includegraphics[width=0.8\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_matrix_plots} | ||||
|         \includegraphics[width=0.8\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_matrix_plots.pdf} | ||||
|       \end{column} | ||||
|       \hfill\pause | ||||
|       \begin{column}{0.5\linewidth} | ||||
|         \centering | ||||
|         \textbf{Best Training Set} | ||||
|         \includegraphics[width=0.8\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_best_plots} | ||||
|         \includegraphics[width=0.8\columnwidth, trim={0 0 3.3in 0}, clip]{img/cicy_best_plots.pdf} | ||||
|       \end{column} | ||||
|     \end{columns} | ||||
|   \end{frame} | ||||
| @@ -1635,14 +1622,14 @@ | ||||
|  | ||||
|         \begin{block}{Neural Networks} | ||||
|           \vspace{0.5em} | ||||
|           \begin{tabular}{@{}lc@{}} | ||||
|             fully connected: | ||||
|           \begin{tabular}{@{}ll@{}} | ||||
|             \textbf{fully connected}: | ||||
|             & | ||||
|             $a^{\qty(i)\, \qty{l+1}} = \upphi\qty( a^{\qty(i)\, \qty{l}} \cdot W^{\qty{l}} + b^{\qty{l}} \mathds{1} )$ | ||||
|             $a^{\qty(i)\, \qty{l+1}} = \upphi\qty( a^{\qty(i)\, \qty{l}} \cdot W^{\qty{l}} + b^{\qty{l}} \mathds{1}_l )$ | ||||
|             \\ | ||||
|             convolutional: | ||||
|             \textbf{convolutional}: | ||||
|             & | ||||
|             $a^{\qty(i)\, \qty{l+1}} = \upphi\qty( a^{\qty(i)\, \qty{l}}\, *\, W^{\qty{l}} + b^{\qty{l}} \mathds{1} )$ | ||||
|             $a^{\qty(i)\, \qty{l+1}} = \upphi\qty( a^{\qty(i)\, \qty{l}}\, *\, W^{\qty{l}} + b^{\qty{l}} \mathds{1}_l )$ | ||||
|           \end{tabular} | ||||
|         \end{block} | ||||
|  | ||||
| @@ -1679,10 +1666,9 @@ | ||||
|       \hfill | ||||
|       \begin{column}{0.6\linewidth} | ||||
|         \centering | ||||
|         \only<1>{\includegraphics[width=0.75\columnwidth, trim={12in 10in 0 0}, clip]{img/input_mat}} | ||||
|         \only<2>{\includegraphics[width=0.75\columnwidth, trim={12in 5in 0 5in}, clip]{img/input_mat}} | ||||
|         \only<3>{\includegraphics[width=0.75\columnwidth, trim={12in 0 0 10in}, clip]{img/input_mat}} | ||||
|         \only<4->{\resizebox{\columnwidth}{!}{\import{img}{ccnn.pgf}}} | ||||
|         \only<1-3>{\includegraphics[width=0.75\columnwidth, trim={12in 5in 0 5in}, clip]{img/input_mat.png}} | ||||
|         \only<4>{\animategraphics[autoplay,loop,controls,width=\linewidth]{8}{img/animation/sequence/conv-}{0}{79}} | ||||
|         \only<5>{\resizebox{\columnwidth}{!}{\import{img}{ccnn.pgf}}} | ||||
|       \end{column} | ||||
|     \end{columns} | ||||
|   \end{frame} | ||||
| @@ -1709,13 +1695,13 @@ | ||||
|       \begin{column}{0.5\linewidth} | ||||
|         \centering | ||||
|         \textbf{Best Training Set} | ||||
|         \includegraphics[width=\columnwidth]{img/cicy_best_plots} | ||||
|         \includegraphics[width=\columnwidth]{img/cicy_best_plots.pdf} | ||||
|       \end{column} | ||||
|       \hfill | ||||
|       \begin{column}{0.5\linewidth} | ||||
|         \centering | ||||
|         \includegraphics[width=0.75\columnwidth]{img/inc_nn_learning_curve_h11} | ||||
|         \includegraphics[width=0.75\columnwidth]{img/inc_nn_learning_curve} | ||||
|         \includegraphics[width=0.75\columnwidth]{img/inc_nn_learning_curve_h11.pdf} | ||||
|         \includegraphics[width=0.75\columnwidth]{img/inc_nn_learning_curve.pdf} | ||||
|       \end{column} | ||||
|     \end{columns} | ||||
|   \end{frame} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user