Begin NBO part
Signed-off-by: Riccardo Finotello <riccardo.finotello@gmail.com>
This commit is contained in:
		
							
								
								
									
										
											BIN
										
									
								
								img/cone.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								img/cone.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										27
									
								
								img/inconsistent_theories.pgf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										27
									
								
								img/inconsistent_theories.pgf
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,27 @@ | |||||||
|  | \begin{tikzpicture} | ||||||
|  |  | ||||||
|  | % fill the overlap area | ||||||
|  | \draw[black!0, pattern=north east lines, pattern color=black!15] (0cm, 0cm) rectangle (2cm, 2cm); | ||||||
|  | \node[anchor=base, text width=2cm, align=center] at (1cm, 1.4cm) {overlap region}; | ||||||
|  | \node[anchor=base, text width=3cm, align=center, scale=0.5] at (1cm, 0.5cm) {inconsistent theories}; | ||||||
|  |  | ||||||
|  | % draw the horizontal axis | ||||||
|  | \draw[thick, ->] (-3cm, 0cm) -- (4cm, 0cm) node[anchor=south west] {$n$}; | ||||||
|  |  | ||||||
|  | % draw points | ||||||
|  | \node[anchor=north] at (-3cm, 0cm) {$\cdots$}; | ||||||
|  | \filldraw[fill=white, draw=black] (-2cm,0cm) circle (2pt) node[anchor=north] {$-1$}; | ||||||
|  | \filldraw[fill=white, draw=black] (-1cm,0cm) circle (2pt) node[anchor=north] {$0$}; | ||||||
|  | \filldraw[fill=white, draw=black] (0cm,0cm) circle (2pt) node[anchor=north] {$1$}; | ||||||
|  | \node[anchor=north] at (1cm, 0cm) {$\cdots$}; | ||||||
|  | \filldraw[fill=white, draw=black] (2cm,0cm) circle (2pt) node[anchor=north] {$\mathrm{L}$}; | ||||||
|  | \filldraw[fill=white, draw=black] (3cm,0cm) circle (2pt) node[anchor=north] {$\mathrm{L}+1$}; | ||||||
|  | \node[anchor=north] at (4cm, 0cm) {$\cdots$}; | ||||||
|  |  | ||||||
|  | % draw limits | ||||||
|  | \draw[->] (0cm, 2pt) -- (0cm, 2cm) -- (4cm, 2cm) node[midway, anchor=south west] {in-annihilators} node[anchor=north east] {$b_{n}$}; | ||||||
|  | \draw[->] (2cm, 2pt) -- (2cm, 1.8cm) -- (-3cm, 1.8cm) node[midway, anchor=south east] {out-annihilators} node[anchor=north west] {$b^*_{\mathrm{L} + 1 - n}$}; | ||||||
|  |  | ||||||
|  | \end{tikzpicture} | ||||||
|  |  | ||||||
|  | % vim: ft=tex | ||||||
							
								
								
									
										
											BIN
										
									
								
								thesis.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								thesis.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										440
									
								
								thesis.tex
									
									
									
									
									
								
							
							
						
						
									
										440
									
								
								thesis.tex
									
									
									
									
									
								
							| @@ -46,6 +46,7 @@ | |||||||
| \usetikzlibrary{decorations.pathmorphing} | \usetikzlibrary{decorations.pathmorphing} | ||||||
| \usetikzlibrary{decorations.pathreplacing} | \usetikzlibrary{decorations.pathreplacing} | ||||||
| \usetikzlibrary{arrows} | \usetikzlibrary{arrows} | ||||||
|  | \usetikzlibrary{patterns} | ||||||
|  |  | ||||||
| \newenvironment{equationblock}[1]{% | \newenvironment{equationblock}[1]{% | ||||||
|   \begin{block}{#1} |   \begin{block}{#1} | ||||||
| @@ -180,7 +181,7 @@ | |||||||
|       \begin{equation*} |       \begin{equation*} | ||||||
|         S_P\qty[ \upgamma,\, X,\, \uppsi ] |         S_P\qty[ \upgamma,\, X,\, \uppsi ] | ||||||
|         = |         = | ||||||
|         -\frac{1}{4\pi} |         -\frac{1}{4\uppi} | ||||||
|         \int\limits_{-\infty}^{+\infty} \dd{\uptau} |         \int\limits_{-\infty}^{+\infty} \dd{\uptau} | ||||||
|         \int\limits_0^{\ell} \dd{\upsigma} |         \int\limits_0^{\ell} \dd{\upsigma} | ||||||
|         \sqrt{-\det \upgamma}\, |         \sqrt{-\det \upgamma}\, | ||||||
| @@ -207,9 +208,9 @@ | |||||||
|         \begin{itemize} |         \begin{itemize} | ||||||
|           \item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$ |           \item \textbf{Poincaré transf.}\ $X'^{\upmu} = \tensor{\Uplambda}{^{\upmu}_{\upnu}} X^{\upnu} + c^{\upmu}$ | ||||||
|  |  | ||||||
|           \item \textbf{2D diff.}\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \gamma_{\uplambda \uprho}$ |           \item \textbf{2D diff.}\ $\upgamma'_{\upalpha \upbeta} = \tensor{\qty( \mathrm{J}^{-1} )}{_{\upalpha \upbeta}^{\uplambda \uprho}}\, \upgamma_{\uplambda \uprho}$ | ||||||
|  |  | ||||||
|           \item \textbf{Weyl transf.}\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \gamma_{\upalpha \upbeta}$ |           \item \textbf{Weyl transf.}\ $\upgamma'_{\upalpha \upbeta} = e^{2 \upomega}\, \upgamma_{\upalpha \upbeta}$ | ||||||
|         \end{itemize} |         \end{itemize} | ||||||
|       \end{column} |       \end{column} | ||||||
|  |  | ||||||
| @@ -229,48 +230,48 @@ | |||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
|  |  | ||||||
|   \begin{frame}{Action Principle and Conformal Symmetry} |   % \begin{frame}{Action Principle and Conformal Symmetry} | ||||||
|     \begin{columns} |   %   \begin{columns} | ||||||
|       \begin{column}{0.6\linewidth} |   %     \begin{column}{0.6\linewidth} | ||||||
|         \highlight{% |   %       \highlight{% | ||||||
|           Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$: |   %         Let $z = e^{\uptau_E + i \upsigma} \Rightarrow \overline{\partial} \mathcal{T}( z ) = \partial \overline{\mathcal{T}}( \overline{z} ) = 0$: | ||||||
|         } |   %       } | ||||||
|         \begin{equation*} |   %       \begin{equation*} | ||||||
|           \mathcal{T}( z )\, \Upphi_h( w ) |   %         \mathcal{T}( z )\, \Upphi_h( w ) | ||||||
|           \stackrel{z \to w}{\sim} |   %         \stackrel{z \to w}{\sim} | ||||||
|           \frac{h}{(z - w)^2} \Upphi_h( w ) |   %         \frac{h}{(z - w)^2} \Upphi_h( w ) | ||||||
|           + |   %         + | ||||||
|           \frac{1}{z - w} \partial_w \Upphi_h( w ) |   %         \frac{1}{z - w} \partial_w \Upphi_h( w ) | ||||||
|         \end{equation*} |   %       \end{equation*} | ||||||
|         \begin{equation*} |   %       \begin{equation*} | ||||||
|           \mathcal{T}( z )\, \mathcal{T}( w ) |   %         \mathcal{T}( z )\, \mathcal{T}( w ) | ||||||
|           \stackrel{z \to w}{\sim} |   %         \stackrel{z \to w}{\sim} | ||||||
|           \frac{\frac{c}{2}}{(z - w)^4} |   %         \frac{\frac{c}{2}}{(z - w)^4} | ||||||
|           + |   %         + | ||||||
|           \order{(z - w)^{-2}} |   %         \order{(z - w)^{-2}} | ||||||
|         \end{equation*} |   %       \end{equation*} | ||||||
|  |  | ||||||
|         \begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$} |   %       \begin{equationblock}{Virasoro algebra $\mathscr{V} \oplus \overline{\mathscr{V}}$} | ||||||
|           \begin{eqnarray*} |   %         \begin{eqnarray*} | ||||||
|             \qty[ \overset{\scriptscriptstyle(-)}{L}_n,\, \overset{\scriptscriptstyle(-)}{L}_m ] |   %           \qty[ \overset{\scriptscriptstyle(-)}{L}_n,\, \overset{\scriptscriptstyle(-)}{L}_m ] | ||||||
|             & = & |   %           & = & | ||||||
|             (n - m) \overset{\scriptscriptstyle(-)}{L}_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0} |   %           (n - m) \overset{\scriptscriptstyle(-)}{L}_{n + m} + \frac{c}{12} n \qty(n^2 - 1) \updelta_{n + m,\, 0} | ||||||
|             \\ |   %           \\ | ||||||
|             \qty[ L_n,\, \overline{L}_m ] |   %           \qty[ L_n,\, \overline{L}_m ] | ||||||
|             & = & |   %           & = & | ||||||
|             0 |   %           0 | ||||||
|           \end{eqnarray*} |   %         \end{eqnarray*} | ||||||
|         \end{equationblock} |   %       \end{equationblock} | ||||||
|       \end{column} |   %     \end{column} | ||||||
|  |  | ||||||
|       \begin{column}{0.4\linewidth} |   %     \begin{column}{0.4\linewidth} | ||||||
|         \begin{figure}[h] |   %       \begin{figure}[h] | ||||||
|           \centering |   %         \centering | ||||||
|           \resizebox{0.9\columnwidth}{!}{\import{img}{complex_plane.pgf}} |   %         \resizebox{0.9\columnwidth}{!}{\import{img}{complex_plane.pgf}} | ||||||
|         \end{figure} |   %       \end{figure} | ||||||
|       \end{column} |   %     \end{column} | ||||||
|     \end{columns} |   %   \end{columns} | ||||||
|   \end{frame} |   % \end{frame} | ||||||
|  |  | ||||||
|   \begin{frame}{Action Principle and Conformal Symmetry} |   \begin{frame}{Action Principle and Conformal Symmetry} | ||||||
|     \highlight{Superstrings in $D$ dimensions:} |     \highlight{Superstrings in $D$ dimensions:} | ||||||
| @@ -421,7 +422,7 @@ | |||||||
|       \begin{equation*} |       \begin{equation*} | ||||||
|         \mathcal{A}^{\upmu} |         \mathcal{A}^{\upmu} | ||||||
|         \quad \leftrightarrow \quad |         \quad \leftrightarrow \quad | ||||||
|         \alpha_{-1}^{\upmu} \ket{0} |         \upalpha_{-1}^{\upmu} \ket{0} | ||||||
|         \qquad |         \qquad | ||||||
|         \longrightarrow |         \longrightarrow | ||||||
|         \qquad |         \qquad | ||||||
| @@ -430,7 +431,7 @@ | |||||||
|           & |           & | ||||||
|           $\leftrightarrow$ |           $\leftrightarrow$ | ||||||
|           & |           & | ||||||
|           $\alpha_{-1}^A \ket{0},$ |           $\upalpha_{-1}^A \ket{0},$ | ||||||
|           & |           & | ||||||
|           $A = 0,\, 1,\, \dots,\, p$ |           $A = 0,\, 1,\, \dots,\, p$ | ||||||
|           \\ |           \\ | ||||||
| @@ -438,7 +439,7 @@ | |||||||
|           & |           & | ||||||
|           $\leftrightarrow$ |           $\leftrightarrow$ | ||||||
|           & |           & | ||||||
|           $\alpha_{-1}^a \ket{0},$ |           $\upalpha_{-1}^a \ket{0},$ | ||||||
|           & |           & | ||||||
|           $a = 1,\, 2,\, \dots,\, D - p - 1$ |           $a = 1,\, 2,\, \dots,\, D - p - 1$ | ||||||
|         \end{tabular} |         \end{tabular} | ||||||
| @@ -740,7 +741,7 @@ | |||||||
|               \begin{split} |               \begin{split} | ||||||
|                 \eval{S_{\mathds{R}^4}}_{\text{on-shell}} |                 \eval{S_{\mathds{R}^4}}_{\text{on-shell}} | ||||||
|                 & = |                 & = | ||||||
|                 \frac{1}{2\pi \alpha'} |                 \frac{1}{2\uppi \upalpha'} | ||||||
|                 \sum\limits_{t = 1}^3 |                 \sum\limits_{t = 1}^3 | ||||||
|                 \qty( \frac{1}{2} \abs{g_{(t)}^{\perp}} \abs{f_{(t-1)} - f_{(t)}} ) |                 \qty( \frac{1}{2} \abs{g_{(t)}^{\perp}} \abs{f_{(t-1)} - f_{(t)}} ) | ||||||
|                 \\ |                 \\ | ||||||
| @@ -830,11 +831,352 @@ | |||||||
|     \end{block} |     \end{block} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
|  |   \begin{frame}{Conserved Product and Operators} | ||||||
|  |     Expand on a \highlight{basis of solutions} | ||||||
|  |     \begin{equation*} | ||||||
|  |       \uppsi_{\pm}( \upxi_{\pm} ) | ||||||
|  |       = | ||||||
|  |       \sum\limits_{n = -\infty}^{+\infty} b_n\, \uppsi_n( \upxi_{\pm} ) | ||||||
|  |       \qquad | ||||||
|  |       \Rightarrow | ||||||
|  |       \qquad | ||||||
|  |       \Uppsi( z ) | ||||||
|  |       = | ||||||
|  |       \begin{cases} | ||||||
|  |         \uppsi_{E,\, +}( u ) \quad \text{if}~z \in \mathscr{H}_{>}^{(\overline{t})} | ||||||
|  |         \\ | ||||||
|  |         \uppsi_{E,\, -}( u ) \quad \text{if}~z \in \mathscr{H}_{<}^{(\overline{t})} | ||||||
|  |       \end{cases} | ||||||
|  |     \end{equation*} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{equationblock}{Conserved Product and Dual Basis} | ||||||
|  |       \begin{equation*} | ||||||
|  |         \left\langle\!\left\langle | ||||||
|  |           \tensor[^*]{\uppsi}{_n},\, | ||||||
|  |           \uppsi_m | ||||||
|  |         \right. \right\rangle | ||||||
|  |         = | ||||||
|  |         2\uppi \mathcal{N}\, | ||||||
|  |         \oint | ||||||
|  |         \frac{\dd{z}}{2\uppi i}\, | ||||||
|  |         \tensor[^*]{\Uppsi}{_n^*}\, | ||||||
|  |         \tensor{\Uppsi}{_m} | ||||||
|  |         = | ||||||
|  |         \updelta_{n,\, m} | ||||||
|  |         \quad | ||||||
|  |         \Rightarrow | ||||||
|  |         \quad | ||||||
|  |         \left\langle\!\left\langle | ||||||
|  |           \tensor[^*]{\Uppsi}{_n^{(*)}},\, | ||||||
|  |           \Uppsi^{(*)} | ||||||
|  |         \right. \right\rangle | ||||||
|  |         = | ||||||
|  |         b_n^{(\dagger)} | ||||||
|  |       \end{equation*} | ||||||
|  |     \end{equationblock} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     Derive the \highlight{algebra of operators:} | ||||||
|  |     \begin{equation*} | ||||||
|  |       \qty[ b_n,\, b_m^{\dagger} ]_+ | ||||||
|  |       = | ||||||
|  |       \frac{2 \mathcal{N}}{T}\, | ||||||
|  |       \left\langle\!\left\langle | ||||||
|  |         \tensor[^*]{\Uppsi}{_n^*},\, | ||||||
|  |         \Uppsi_m^* | ||||||
|  |       \right. \right\rangle | ||||||
|  |     \end{equation*} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|  |   \begin{frame}{Twisted Complex Fermions} | ||||||
|  |     Consider the case $R_{(t)} = e^{i \uppi \upalpha_{(t)}} \in \mathrm{U}( 1 )$: | ||||||
|  |     \begin{equation*} | ||||||
|  |       \Uppsi( x_{(t)} + e^{2\uppi i} \updelta ) | ||||||
|  |       = | ||||||
|  |       e^{i \uppi \upepsilon_{(t)}}\, | ||||||
|  |       \Uppsi( x_{(t)} + \updelta ) | ||||||
|  |     \end{equation*} | ||||||
|  |     where | ||||||
|  |     \begin{equation*} | ||||||
|  |       \upepsilon_{(t)} | ||||||
|  |       = | ||||||
|  |       \upalpha_{(t+1)} - \upalpha_{(t)} | ||||||
|  |       + | ||||||
|  |       \uptheta\qty( \upalpha_{(t)} - \upalpha_{(t+1)} - 1 ) | ||||||
|  |       - | ||||||
|  |       \uptheta\qty( \upalpha_{(t+1)} - \upalpha_{(t)} - 1 ) | ||||||
|  |     \end{equation*} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{equationblock}{Basis of Solutions} | ||||||
|  |       \begin{equation*} | ||||||
|  |         \begin{split} | ||||||
|  |           \Uppsi_n\qty( z;\, \qty{ x_{(t)} } ) | ||||||
|  |           & = | ||||||
|  |           \mathcal{N}_{\Uppsi}\, | ||||||
|  |           z^{-n}\, | ||||||
|  |           \prod\limits_{t = 1}^N | ||||||
|  |           \qty( 1 - \frac{z}{x_{(t)}} )^{n_{(t)} + \frac{\upepsilon_{(t)}}{2}} | ||||||
|  |           \\ | ||||||
|  |           \tensor[^*]{\Uppsi}{_n}\qty( z;\, \qty{ x_{(t)} } ) | ||||||
|  |           & = | ||||||
|  |           \frac{1}{2\uppi \mathcal{N} \mathcal{N}_{\Uppsi}}\, | ||||||
|  |           z^{n - 1}\, | ||||||
|  |           \prod\limits_{t = 1}^N | ||||||
|  |           \qty( 1 - \frac{z}{x_{(t)}} )^{-\widetilde{n}_{(t)} + \frac{\upepsilon_{(t)}}{2}} | ||||||
|  |         \end{split} | ||||||
|  |       \end{equation*} | ||||||
|  |     \end{equationblock} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|  |   \begin{frame}{Vacua} | ||||||
|  |     Define the \textbf{vacuum} with respect to $b_n$: | ||||||
|  |     \begin{equation*} | ||||||
|  |       \begin{split} | ||||||
|  |         b_n \ket{\qty{ x_{(t)} }} = 0 &\quad \text{for} \quad n \ge 1 | ||||||
|  |         \\ | ||||||
|  |         b_n \ket{\widetilde{0}} = 0 &\quad \text{for} \quad n \ge n_{(t)} + \frac{\upepsilon_{(t)}}{2} + \frac{1}{2} | ||||||
|  |       \end{split} | ||||||
|  |     \end{equation*} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     Theories are subject to \highlight{consistency conditions:} | ||||||
|  |     \begin{columns} | ||||||
|  |       \begin{column}{0.6\linewidth} | ||||||
|  |         \begin{equation*} | ||||||
|  |           \mathrm{L} | ||||||
|  |           = | ||||||
|  |           n_{(t)} + \widetilde{n}_{(t)} | ||||||
|  |           \uncover<3->{% | ||||||
|  |             \alert{= 0} | ||||||
|  |           } | ||||||
|  |         \end{equation*} | ||||||
|  |       \end{column} | ||||||
|  |       \hfill | ||||||
|  |       \begin{column}{0.4\linewidth} | ||||||
|  |         \centering | ||||||
|  |         \resizebox{\columnwidth}{!}{\import{img}{inconsistent_theories.pgf}} | ||||||
|  |       \end{column} | ||||||
|  |     \end{columns} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|  |   \begin{frame}{Stress-energy Tensor and CFT Approach} | ||||||
|  |     Compute the OPEs leading to the \highlight{stress-energy tensor:} | ||||||
|  |     \begin{equation*} | ||||||
|  |       \mathcal{T}( z ) | ||||||
|  |       = | ||||||
|  |       \frac{\uppi T}{2} \mathcal{N}_{\Uppsi}^2 | ||||||
|  |       \sum\limits_{n,\, m = -\infty}^{+\infty} | ||||||
|  |       \colon b_n\, b_m^* \colon\, | ||||||
|  |       z^{-n -m}\, | ||||||
|  |       \qty[% | ||||||
|  |         \frac{m - n}{2} | ||||||
|  |         + | ||||||
|  |         2 \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} | ||||||
|  |       ] | ||||||
|  |       + | ||||||
|  |       \frac{1}{2} \qty( \sum\limits_{t = 1}^N \frac{n_{(t)} + \frac{\upepsilon_{(t)}}{2}}{z - x_{(t)}} )^2 | ||||||
|  |     \end{equation*} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{equationblock}{Invariant Vacuum and Spin Fields} | ||||||
|  |       \begin{equation*} | ||||||
|  |         \ket{\qty{ x_{(t)} }} | ||||||
|  |         = | ||||||
|  |         \mathcal{N}\qty( \qty{ x_{(t)} } )\, | ||||||
|  |         \mathrm{R}\qty[ \prod\limits_{t = 1}^M S_{(t)}( x_{(t)} ) ]\, | ||||||
|  |         \ket{0}_{\mathrm{SL}_2( \mathds{R} )} | ||||||
|  |       \end{equation*} | ||||||
|  |     \end{equationblock} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|  |   \begin{frame}{Spin Fields Amplitudes} | ||||||
|  |     \begin{equationblock}{Equivalence with Bosonization} | ||||||
|  |       \begin{equation*} | ||||||
|  |         \begin{split} | ||||||
|  |           \partial_{x_{(t)}} \braket{\qty{x_{(t)}}} | ||||||
|  |           & = | ||||||
|  |           \oint\limits_{x_{(t)}} \frac{\dd{z}}{2\uppi i} | ||||||
|  |           \frac{% | ||||||
|  |             \bra{\qty{x_{(t)}}} \mathcal{T}( z ) \ket{\qty{x_{(t)}}} | ||||||
|  |           }{% | ||||||
|  |             \braket{\qty{x_{(t)}}} | ||||||
|  |           } | ||||||
|  |           \\ | ||||||
|  |           \Rightarrow | ||||||
|  |           \quad | ||||||
|  |           \braket{\qty{x_{(t)}}} | ||||||
|  |           & = | ||||||
|  |           \mathcal{N}\qty( \qty{ \upepsilon_{(t)} } ) | ||||||
|  |           \prod\limits_{\substack{t = 1 \\ t > u}}^N | ||||||
|  |           \qty( x_{(u)} - x_{(t)} )^{\qty( n_{(u)} + \frac{\upepsilon_{(u)}}{2} )\qty( n_{(t)} + \frac{\upepsilon_{(t)}}{2} )} | ||||||
|  |         \end{split} | ||||||
|  |       \end{equation*} | ||||||
|  |     \end{equationblock} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{itemize} | ||||||
|  |       \item (semi-)phenomenological models involve \textbf{twist and spin} fields and \textbf{open strings} | ||||||
|  |  | ||||||
|  |         \pause | ||||||
|  |  | ||||||
|  |       \item general framework for \textbf{bosonic} open strings with \textbf{intersecting D-branes} | ||||||
|  |  | ||||||
|  |         \pause | ||||||
|  |  | ||||||
|  |       \item leading contribution for \textbf{twist fields} | ||||||
|  |  | ||||||
|  |         \pause | ||||||
|  |  | ||||||
|  |       \item \textbf{spin fields} as \textbf{boundary changing operators} on \textbf{defects} | ||||||
|  |  | ||||||
|  |         \pause | ||||||
|  |  | ||||||
|  |       \item alternative framework for amplitudes (extension to (non) Abelian twist/spin fields?) | ||||||
|  |     \end{itemize} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|  |  | ||||||
|   \section[Time Divergences]{Cosmological Backgrounds and Divergences} |   \section[Time Divergences]{Cosmological Backgrounds and Divergences} | ||||||
|  |  | ||||||
|   \begin{frame}{BBB} |  | ||||||
|     b |   \subsection[Orbifold]{Orbifolds and Cosmological Toy Models} | ||||||
|  |  | ||||||
|  |   \begin{frame}{A Few Words on a Theory of Everything} | ||||||
|  |     \begin{center} | ||||||
|  |       string theory = theory of everything = nuclear forces + gravity | ||||||
|  |     \end{center} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{columns} | ||||||
|  |       \begin{column}{0.5\linewidth} | ||||||
|  |         \centering | ||||||
|  |         \includegraphics[width=0.9\columnwidth]{img/cone} | ||||||
|  |       \end{column} | ||||||
|  |       \hfill | ||||||
|  |       \begin{column}{0.5\linewidth} | ||||||
|  |         From the phenomenological point of view: | ||||||
|  |         \begin{itemize} | ||||||
|  |           \item cosmological implications | ||||||
|  |              | ||||||
|  |             \pause | ||||||
|  |  | ||||||
|  |           \item Big Bang(-like) singularities | ||||||
|  |  | ||||||
|  |             \pause | ||||||
|  |  | ||||||
|  |           \item toy models of \textbf{space-like singularities} | ||||||
|  |         \end{itemize} | ||||||
|  |  | ||||||
|  |         \pause | ||||||
|  |  | ||||||
|  |         \begin{center} | ||||||
|  |           $\Downarrow$ | ||||||
|  |  | ||||||
|  |           \highlight{time-dependent orbifold models} | ||||||
|  |         \end{center} | ||||||
|  |       \end{column} | ||||||
|  |     \end{columns} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|  |   \begin{frame}{Orbifolds} | ||||||
|  |     \begin{columns}[c] | ||||||
|  |       \begin{column}{0.475\linewidth} | ||||||
|  |         \begin{center} | ||||||
|  |           \textbf{Mathematics} | ||||||
|  |  | ||||||
|  |           \begin{itemize} | ||||||
|  |             \item manifold $M$ | ||||||
|  |  | ||||||
|  |             \item (Lie) group $G$ | ||||||
|  |  | ||||||
|  |             \item \emph{stabilizer} $G_p = \qty{g \in G \mid gp = p \in M}$ | ||||||
|  |  | ||||||
|  |             \item \emph{orbit} $Gp = \qty{gp \in M \mid g \in G}$ | ||||||
|  |  | ||||||
|  |             \item charts $\upphi = \uppi \circ \mathscr{P}$ where: | ||||||
|  |  | ||||||
|  |             \begin{itemize} | ||||||
|  |               \item $\mathscr{P}\colon U \subset \mathds{R}^n \to U / G$ | ||||||
|  |  | ||||||
|  |               \item $\uppi\colon U / G \to M$ | ||||||
|  |             \end{itemize} | ||||||
|  |           \end{itemize} | ||||||
|  |         \end{center} | ||||||
|  |       \end{column} | ||||||
|  |       \begin{column}{0.05\linewidth} | ||||||
|  |         \centering | ||||||
|  |         $\Rightarrow$ | ||||||
|  |       \end{column} | ||||||
|  |       \begin{column}{0.475\linewidth} | ||||||
|  |         \begin{center} | ||||||
|  |           \textbf{Physics} | ||||||
|  |  | ||||||
|  |           \begin{itemize} | ||||||
|  |             \item global orbit space $M / G$ | ||||||
|  |  | ||||||
|  |             \item $G$ group of isometries | ||||||
|  |  | ||||||
|  |             \item fixed points | ||||||
|  |  | ||||||
|  |             \item additional d.o.f.\ (\emph{twisted states}) | ||||||
|  |  | ||||||
|  |             \item singular limits of CY manifolds | ||||||
|  |           \end{itemize} | ||||||
|  |         \end{center} | ||||||
|  |       \end{column} | ||||||
|  |     \end{columns} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{center} | ||||||
|  |       time-dependent orbifolds | ||||||
|  |     \end{center} | ||||||
|  |  | ||||||
|  |     \begin{tikzpicture}[remember picture, overlay] | ||||||
|  |       \draw[line width=4pt, red] (13em,3.5em) rectangle (27em, 1em); | ||||||
|  |     \end{tikzpicture} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|  |   \begin{frame}{Cosmological Singularities} | ||||||
|  |     Use \textbf{time-dependent orbifolds} to model \textbf{space-like singularities}: | ||||||
|  |      | ||||||
|  |     \begin{center} | ||||||
|  |       divergent \highlight{closed string} aplitudes | ||||||
|  |       $\Rightarrow$ | ||||||
|  |       gravitational backreaction? | ||||||
|  |     \end{center} | ||||||
|  |  | ||||||
|  |     \pause | ||||||
|  |  | ||||||
|  |     \begin{block}{Divergences} | ||||||
|  |       Even in simple models (e.g.\ NBO, more on this later) the $4$ tachyons amplitude is divergent \textbf{at tree level}: | ||||||
|  |       \begin{equation*} | ||||||
|  |         A_4 \sim \int\limits_{q \sim \infty} \frac{\dd{q}}{\abs{q}} \mathscr{A}( q ) | ||||||
|  |       \end{equation*} | ||||||
|  |       where | ||||||
|  |       \begin{equation*} | ||||||
|  |         \mathscr{A}_{\text{closed}}( q ) \sim q^{4 - \upalpha' \norm{\vec{p}_{\perp}}^2} | ||||||
|  |         \qquad | ||||||
|  |         \text{and} | ||||||
|  |         \qquad | ||||||
|  |         \mathscr{A}_{\text{open}}( q ) \sim q^{1 - \upalpha' \norm{\vec{p}_{\perp}}^2} \trace(\qty[T_1,\, T_2]_+\, \qty[T_3,\, T_4]_+) | ||||||
|  |       \end{equation*} | ||||||
|  |     \end{block} | ||||||
|  |   \end{frame} | ||||||
|  |  | ||||||
|  |    | ||||||
|  |   \subsection[NBO]{Null Boost Orbifold} | ||||||
|  |  | ||||||
|  |   \begin{frame}{Null Boost Orbifold} | ||||||
|   \end{frame} |   \end{frame} | ||||||
|  |  | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user